SE 2A04 Fall 2002

06 Software Structure

Instructor: W. M. Farmer

Revised: 13 November 2002

Importance of Structure

e A good software product requires a good structure

e Several kinds of structure can be associated with a
software product

— Some structures are hierarchical (i.e., they can be
represented by a directed acyclic graph (DAG))

— Not all structures are equally important for a
particular software product

— Different structures may conflict with each other

Kinds of Software Structure

1. Control flow

2. Data flow

3. Entity relationship
4. State transition

5. Abstraction

6. “Uses”

7. Access

8. File

9. Code

Control Flow Structure

e How does control flow through the software?
In what order are parts of the software executed?
Where do branches occur in the software?

e Important when testing all possible paths through the
software (called path coverage)

e Control flow graphs are used to graphically represent
the structure

— Usually based solely on the software’s syntax

Data Flow Structure

e How does data flow through the product?
How are outputs connected to inputs?

e Important when data flow is key

e Data flow diagrams are used to graphically represent
the structure

Entity Relationship Structure

e \What entities are part of the product?
What relationships do the entities have?

e Important when data relationships are key

e Entity-relationship diagrams are used to graphically
represent the structure

State Transition Structure

e \What are the stable states of the product?
What are the possible state transitions?

e Important when state is key

e State transition diagrams are used to
graphically represent the structure

— May not be practical if there are too many states

Abstraction Structure

e \What serve as specifications in the product design?
What serve as implementations in the product design?
Where does refinement occur in the product design?

e [he structure is usually hierarchical
e [he structure includes the module structure

e Abstraction diagrams are used to graphically represent
the structure

— Shows the satisfaction relation between
specifications and implementations

Uses Structure

e (Parnas) A procedure A with specification S uses a
procedure B if A cannot satisfy S unless B is present and
functioning correctly

— A procedure A to calculate the average of a set of
numbers uses a procedure B to do addition

— A procedure B serving as a parameter of a procedure
A may be called but is not used in the sense above

e Benefits of a well-designed uses hierarchy:

— Product extension: procedures can be added without
modifying the existing procedures

— Product contraction: whole procedures can be deleted
instead of modifying existing procedures

— Characterization of possible subsets of the product

— Hierarchy of languages

Criteria for Allowing a Procedure A to
Use a Procedure B

1. A is simpler because it uses B

2. B is not more complex because it is not allowed to use A
3. There is a useful subset containing B and not A

4. There is no useful subset containing A and not B
References:

e D. Parnas, “Designing software for ease of extension and
contraction”, in: D. Hoffman and D. Weiss, Software
Fundamentals, Addison Wesley, 2001.

e D. Parnas, “On a ‘buzzword’: hierarchical structure”,
in: D. Hoffman and D. Weiss, Software Fundamentals,
Addison Wesley, 2001.

10

Access Structure

e Subjects are granted access privileges to objects on the
basis of trust

— Examples of subjects: Processes, procedures,
OO objects, modules

— Examples of objects: Variables, data structures, files,
procedures, OO objects, modules

e Unauthorized access is either:

— Made impossible or

— Prevented by an access control mechanism which
authenticates the subject and then checks whether it
is authorized to access the object

11

File Structure:
General Recommmendations

e EXxpress the structure of the software’s design in
the software’s file structure

e Put files that work together in the same directory

e Use version control software to control and track
modifications to files

12

Kinds of Files

e A software system will often contain various kinds of files
for holding:

— Source code

— ODbject code

— Scripts

— Binary executables
— Data

— Documentation

e Use file name suffixes to distinguish between different
kinds of files

13

Modules

e Put all the files associated with a module in the same
directory

e [he directory of a module should contain:

— A readme file describing the module and its use

— A status file listing what is finished and what needs
to be done

— An install file that will install the module
— A make file to automatically update module files

— A maintenance file explaining how to maintain the
module files

14

Interfaces

e Put the interface and the implementation of a module in
separate files or in separate parts of a file

— Enables an implementation to be easily replaced
— Other modules only need access to the interface file

— In C, the interface can be put in a header file while
the implementation is put in a source file

e List at the top of each implementation file the interfaces
that the implementation uses

— In C, this is done with an #include command

15

Code Structure:
General Recommmendations

e Be consistent
e As a general rule, choose clarity before efficiency

e EXxpress the structure of the software’s design in the
software’s code

e Follow the conventions of the programming language
being used

16

Keep the Code Simple

Write procedures that fit on one screen

Put at most one programming statement on a line

Keep the following measures low:

— Loop nesting level
— Conditional nesting level
— Number of local variables in a procedure

Avoid control structures that radically change state

— EXits, gotos, state jumps, self-modifying code

Avoid nonstandard language features

17

Naming Programming Entities
e Naming is an important but difficult task

e One should employ a naming convention
— Names should be short and descriptive

— The more global the entity, the more descriptive
the name should be

— The more local, the shorter the name can be

e A name may include:

— Type of entity or return value
— Name of module

e \Words in a name can be separated by underscores,
hyphens, and case changes, but avoid using spaces

18

Formatting Code

Use formatting to display the structure of the code

— Indentation to display subordinate relationships
between code

— Alignment to identify blocks of code
— Blank lines to separate blocks of code

Write fully bracketed code to facilitate maintenance

Write code in tabular form whenever possible

Avoid “wrap-around’ code

Line up comments to the right of the code

19

Scope of Variables

e Make the scope of variables as narrow as possible

— Avoid global variables

e A wide-scoped variable is:

— Harder to maintain because its instances may appear
far apart from each other

— More easily corrupted because its data can be modified
by diverse procedures

e Decrease the scope of a variable by introducing
procedures for accessing the variable

20

Procedures

e Use a convention for naming and ordering parameters

e Make explicit and carefully control any side-effects

— Keep the use of side-effects to a minimum

e Make the scope of procedures as narrow as possible

e Any code fragment used more than once should be made
into a procedure

— Make procedures powerful

— Use simple procedures to invoke powerful procedures
in special ways

21

Code Documentation

e Components:

— Specification of what the code is required to do

— Pseudocode description of what the code does

— Commented code

— Proof that code’s behavior satisfies its specification
— Mapping of code specification back to the design

e Several approaches:

— @Generate documentation from code files
— @Generate code from documentation files
— @Generate documentation and code from common files

22

Commenting Code

e Begin every code file with:

— Copyright statement
— Authors
— Description of contents

— Revision date and log of changes made to the file

e Comment:

— Each variable declaration

— Each procedure definition

— Loops and larger blocks of code
— Anything that is not obvious

e Avoid excessive comments in procedure bodies

— Write code so that what it does iIs obvious

23

Loops

e A |loop terminates if there is a natural number value
that strictly decreases with each iteration of the loop

e An invariant of a loop is a formula ¢ such that:

— ¢ is true before the loop is executed
— (is true after each execution of the body of the loop

e [he documentation of each loop should include:

— A strictly decreasing natural number value
— A loop invariant

e Ideally, the strictly decreasing natural number value and
the invariant should be formulated before the |loop is
coded

24

Min and Max of an Array: Problem

o Let
MinMax : Array[0,n](Z) — N x N

be the function that, given an array a € Array[0,n](Z),
returns a pair (¢,5) of indices of a such that

Vm:N.O0<m<n=ali] <alm] <alj]

e Problem: Implement MinMax

25

Min and Max of an Array: Solution

e procedure MinMax(a : Array[0,n](Z)) : N x N
var 1,7,k : N,;
1,7 =0k =1,
loop (while k <n+1),
case
(alk] < ali],7 := k),
(alk] > alj],5 := k),
(ali] < alk] < alj], skip)
end;
k:=k+1
end;
return (7, 7)
end procedure

e Strictly decreasing natural number value: n+ 1 — &

e Loop invariant: Vm : N .0 <m < k = ali] <a[m] < alj]

26

Euclid’'s GCD Algorithm: Problem

e [he GCD of two positive integers is the greatest
common divisor of the two integers

e Problem: Implement the function GCD : Z x Z — Z

e Some mathematical facts:

— Ifx >0, y >0, and =z > y, then
GCD(z — y,y) = GCD(z,y)
— If £ > 0, then GCD(z,z) =z

27

Euclid’'s GCD Algorithm: Solution

e procedure GCD(x:Z,y:Z):.Z
case
(x>0Ay >0,
loop (),
case
($>y7$::x_y)a
(y >z,y =y —x),
(z = y, exit)
end
end),
(x <0Vy<O0,error)
end;
return z
end procedure

e Strictly decreasing natural number value: max(x,y)

e Loop invariant: max(z,y) > GCD(x,y) = GCD(zg, yg)

28

Error Messages

e Make error messages as informative as possible

— Indicate where in the code the error occurred
— Describe the situation that caused the error

o “Throw’ lower-level errors to appropriate higher-level code

e Write error messages for both the user and the developer

29

Coding Structure: Conclusions

e Use an effective coding style

e Continuously look for ways of making your code:

— Simpler
— More powerful
— Better documented

e Make the structure of the software explicit

30

