
SE 2A04 Fall 2002

06 Software Structure

Instructor: W. M. Farmer

Revised: 13 November 2002

1



Importance of Structure

• A good software product requires a good structure

• Several kinds of structure can be associated with a

software product

– Some structures are hierarchical (i.e., they can be

represented by a directed acyclic graph (DAG))

– Not all structures are equally important for a

particular software product

– Different structures may conflict with each other

2



Kinds of Software Structure

1. Control flow

2. Data flow

3. Entity relationship

4. State transition

5. Abstraction

6. “Uses”

7. Access

8. File

9. Code
3



Control Flow Structure

• How does control flow through the software?

In what order are parts of the software executed?

Where do branches occur in the software?

• Important when testing all possible paths through the

software (called path coverage)

• Control flow graphs are used to graphically represent

the structure

– Usually based solely on the software’s syntax

4



Data Flow Structure

• How does data flow through the product?

How are outputs connected to inputs?

• Important when data flow is key

• Data flow diagrams are used to graphically represent

the structure

5



Entity Relationship Structure

• What entities are part of the product?

What relationships do the entities have?

• Important when data relationships are key

• Entity-relationship diagrams are used to graphically

represent the structure

6



State Transition Structure

• What are the stable states of the product?

What are the possible state transitions?

• Important when state is key

• State transition diagrams are used to

graphically represent the structure

– May not be practical if there are too many states

7



Abstraction Structure

• What serve as specifications in the product design?

What serve as implementations in the product design?

Where does refinement occur in the product design?

• The structure is usually hierarchical

• The structure includes the module structure

• Abstraction diagrams are used to graphically represent

the structure

– Shows the satisfaction relation between

specifications and implementations

8



Uses Structure

• (Parnas) A procedure A with specification S uses a

procedure B if A cannot satisfy S unless B is present and

functioning correctly

– A procedure A to calculate the average of a set of

numbers uses a procedure B to do addition

– A procedure B serving as a parameter of a procedure

A may be called but is not used in the sense above

• Benefits of a well-designed uses hierarchy:

– Product extension: procedures can be added without

modifying the existing procedures

– Product contraction: whole procedures can be deleted

instead of modifying existing procedures

– Characterization of possible subsets of the product

– Hierarchy of languages
9



Criteria for Allowing a Procedure A to
Use a Procedure B

1. A is simpler because it uses B

2. B is not more complex because it is not allowed to use A

3. There is a useful subset containing B and not A

4. There is no useful subset containing A and not B

References:

• D. Parnas, “Designing software for ease of extension and
contraction”, in: D. Hoffman and D. Weiss, Software
Fundamentals, Addison Wesley, 2001.

• D. Parnas, “On a ‘buzzword’: hierarchical structure”,
in: D. Hoffman and D. Weiss, Software Fundamentals,
Addison Wesley, 2001.

10



Access Structure

• Subjects are granted access privileges to objects on the

basis of trust

– Examples of subjects: Processes, procedures,

OO objects, modules

– Examples of objects: Variables, data structures, files,

procedures, OO objects, modules

• Unauthorized access is either:

– Made impossible or

– Prevented by an access control mechanism which

authenticates the subject and then checks whether it

is authorized to access the object

11



File Structure:
General Recommendations

• Express the structure of the software’s design in

the software’s file structure

• Put files that work together in the same directory

• Use version control software to control and track

modifications to files

12



Kinds of Files

• A software system will often contain various kinds of files

for holding:

– Source code

– Object code

– Scripts

– Binary executables

– Data

– Documentation

• Use file name suffixes to distinguish between different

kinds of files

13



Modules

• Put all the files associated with a module in the same

directory

• The directory of a module should contain:

– A readme file describing the module and its use

– A status file listing what is finished and what needs

to be done

– An install file that will install the module

– A make file to automatically update module files

– A maintenance file explaining how to maintain the

module files

14



Interfaces

• Put the interface and the implementation of a module in

separate files or in separate parts of a file

– Enables an implementation to be easily replaced

– Other modules only need access to the interface file

– In C, the interface can be put in a header file while

the implementation is put in a source file

• List at the top of each implementation file the interfaces

that the implementation uses

– In C, this is done with an #include command

15



Code Structure:
General Recommendations

• Be consistent

• As a general rule, choose clarity before efficiency

• Express the structure of the software’s design in the

software’s code

• Follow the conventions of the programming language

being used

16



Keep the Code Simple

• Write procedures that fit on one screen

• Put at most one programming statement on a line

• Keep the following measures low:

– Loop nesting level

– Conditional nesting level

– Number of local variables in a procedure

• Avoid control structures that radically change state

– Exits, gotos, state jumps, self-modifying code

• Avoid nonstandard language features

17



Naming Programming Entities

• Naming is an important but difficult task

• One should employ a naming convention

– Names should be short and descriptive

– The more global the entity, the more descriptive

the name should be

– The more local, the shorter the name can be

• A name may include:

– Type of entity or return value

– Name of module

• Words in a name can be separated by underscores,

hyphens, and case changes, but avoid using spaces

18



Formatting Code

• Use formatting to display the structure of the code

– Indentation to display subordinate relationships

between code

– Alignment to identify blocks of code

– Blank lines to separate blocks of code

• Write fully bracketed code to facilitate maintenance

• Write code in tabular form whenever possible

• Avoid “wrap-around” code

• Line up comments to the right of the code

19



Scope of Variables

• Make the scope of variables as narrow as possible

– Avoid global variables

• A wide-scoped variable is:

– Harder to maintain because its instances may appear

far apart from each other

– More easily corrupted because its data can be modified

by diverse procedures

• Decrease the scope of a variable by introducing

procedures for accessing the variable

20



Procedures

• Use a convention for naming and ordering parameters

• Make explicit and carefully control any side-effects

– Keep the use of side-effects to a minimum

• Make the scope of procedures as narrow as possible

• Any code fragment used more than once should be made

into a procedure

– Make procedures powerful

– Use simple procedures to invoke powerful procedures

in special ways

21



Code Documentation

• Components:

– Specification of what the code is required to do

– Pseudocode description of what the code does

– Commented code

– Proof that code’s behavior satisfies its specification

– Mapping of code specification back to the design

• Several approaches:

– Generate documentation from code files

– Generate code from documentation files

– Generate documentation and code from common files

22



Commenting Code

• Begin every code file with:

– Copyright statement

– Authors

– Description of contents

– Revision date and log of changes made to the file

• Comment:

– Each variable declaration

– Each procedure definition

– Loops and larger blocks of code

– Anything that is not obvious

• Avoid excessive comments in procedure bodies

– Write code so that what it does is obvious

23



Loops

• A loop terminates if there is a natural number value

that strictly decreases with each iteration of the loop

• An invariant of a loop is a formula ϕ such that:

– ϕ is true before the loop is executed

– ϕ is true after each execution of the body of the loop

• The documentation of each loop should include:

– A strictly decreasing natural number value

– A loop invariant

• Ideally, the strictly decreasing natural number value and

the invariant should be formulated before the loop is

coded

24



Min and Max of an Array: Problem

• Let

MinMax : Array[0, n](Z)→ N×N

be the function that, given an array a ∈ Array[0, n](Z),

returns a pair (i, j) of indices of a such that

∀m : N . 0 ≤ m < n ⇒ a[i] ≤ a[m] ≤ a[j]

• Problem: Implement MinMax

25



Min and Max of an Array: Solution

• procedure MinMax(a : Array[0, n](Z)) : N×N
var i, j, k : N;
i, j := 0; k := 1;
loop (while k < n + 1),

case
(a[k] < a[i], i := k),
(a[k] > a[j], j := k),
(a[i] ≤ a[k] ≤ a[j], skip)

end;
k := k + 1

end;
return (i, j)

end procedure

• Strictly decreasing natural number value: n + 1− k

• Loop invariant: ∀m : N . 0 ≤ m < k ⇒ a[i] ≤ a[m] ≤ a[j]

26



Euclid’s GCD Algorithm: Problem

• The GCD of two positive integers is the greatest

common divisor of the two integers

• Problem: Implement the function GCD : Z×Z→ Z

• Some mathematical facts:

– If x > 0, y > 0, and x > y, then

GCD(x− y, y) = GCD(x, y)

– If x > 0, then GCD(x, x) = x

27



Euclid’s GCD Algorithm: Solution

• procedure GCD(x:Z,y:Z):Z
case

(x > 0 ∧ y > 0,
loop (),

case
(x > y, x := x− y),
(y > x, y := y − x),
(x = y, exit)

end
end),

(x ≤ 0 ∨ y ≤ 0, error)
end;
return x

end procedure

• Strictly decreasing natural number value: max(x, y)

• Loop invariant: max(x, y) ≥ GCD(x, y) = GCD(x0, y0)

28



Error Messages

• Make error messages as informative as possible

– Indicate where in the code the error occurred

– Describe the situation that caused the error

• “Throw” lower-level errors to appropriate higher-level code

• Write error messages for both the user and the developer

29



Coding Structure: Conclusions

• Use an effective coding style

• Continuously look for ways of making your code:

– Simpler

– More powerful

– Better documented

• Make the structure of the software explicit

30


