
SE 2A04 Fall 2002

07 Recursion

Instructor: W. M. Farmer

Revised: 17 December 2002

1



What is Recursion?

• Recursion is a method of defining something in terms of

itself

– One of the most fundamental ideas of computing

– An alternative to iteration (loops)

– Can make some programs easier to describe, write,

and prove correct

• Both procedures and data structures can be defined by

recursion

– A set of procedures or data structures can be defined

by mutual recursion

2



Recursion Example: Factorial

MODULE Factorial;

IMPORT Out;

PROCEDURE FactRec*(x: INTEGER): INTEGER;
(* Computes the factorial function using (nontail) recursion. *)

BEGIN
IF x < 0 THEN

Out.String("Input must be nonnegative (ignore output).");
RETURN -1

ELSIF x = 0 THEN
RETURN 1

ELSE
RETURN FactRec(x - 1) * x

END
END FactRec;

END Factorial.

3



Semantics

• A recursive procedure can be understood as:

– A definition of a procedure with an infinite body

– An operational definition (little machine)

– An implicit definition of a procedure that satisfies a

certain property

• The use of recursion requires care and understanding

– Recursive definitions can be nonsensical (i.e.,

nonterminating)

– Sloppy use of recursion can lead to total confusion

4



Implementation

• Recursive procedures are usually implemented using a

call stack

– The stack contains one frame per procedure call

– The nesting depth of recursive calls does not need to

be calculated before execution

• If the nesting depth of recursive calls is infinite, the

procedure will run until the stack space is exhausted

5



Quality Issues

• Termination is shown using a well-founded ordering

– E.g., a strictly decreasing natural number value

• Correctness can be proved using induction

• Efficiency

– In some cases, recursion can be highly inefficient in

the use of space

– In some cases, recursion can be executed in constant

space

6



Tail Recursion

• A procedure is tail recursive if nothing is left to do after

each recursive call in the procedure body

• Tail recursive procedures can be made to execute in

constant space:

– In some programming languages, e.g., Scheme, the

compiler ensures that tail recursive procedures execute

in constant space

– In other programming languages, tail recursive

procedures can be redefined using iteration (which

executes in constant space)

7



Tail Recursion Example: Factorial

MODULE Factorial;

IMPORT Out;

PROCEDURE FactTailRec*(x: INTEGER): INTEGER;
(* Computes the factorial function using tail recursion. *)

BEGIN
RETURN FactTailRecAux(x,1);

END FactTailRec;

PROCEDURE FactTailRecAux(x: INTEGER; accum: INTEGER): INTEGER;
BEGIN

IF x < 0 THEN
Out.String("Input must be nonnegative (ignore output).");
RETURN -1;

ELSIF x = 0 THEN
RETURN accum;

ELSE
RETURN FactTailRecAux(x - 1, accum * x);

END;
END FactTailRecAux;

END Factorial.

8



Example: MIS for Trees ADT (1)

• Imported modules: none required

• Interface:

INTERFACE Trees;
TYPE Tree;
PROCEDURE MakeLeaf(i: INTEGER): Tree;
PROCEDURE MakePair(s,t: Tree): Tree;
PROCEDURE IsLeaf(t: Tree): BOOLEAN;
PROCEDURE GetInteger(t: Tree): INTEGER;
PROCEDURE GetLeft(t: Tree): Tree;
PROCEDURE GetRight(t: Tree): Tree;
PROCEDURE Height(t: Tree): INTEGER;
PROCEDURE Sum(t: Tree): INTEGER;

END Trees.

• Exceptions:

– IntegerOfPair

– SubtreeOfLeaf

9



Example: MIS for Trees ADT (2)

• Axioms:

1. Leaves are leaves.

∀ t : Tree . IsLeaf(t)⇔ ∃ i : INTEGER . t = MakeLeaf(i)

2. Pairs are never leaves.

∀ s, t : Trees . ¬IsLeaf(MakePair(s, t))

3. MakeLeaf is one-to-one.

∀ i, j : INTEGER . MakeLeaf(i) = MakeLeaf(j)⇒ i = j

4. MarkPair is one-to-one.

∀ s1, s2, t1, t2 : Trees .

MakePair(s1, t1) = MakePair(s1, t1)⇒
(s1 = t1 ∧ s2 = t2)

10



Example: MIS for Trees ADT (3)

5. Integer of a leaf.

∀ i : INTEGER . GetInteger(MakeLeaf(i)) = i

6. Integer of a pair.

∀ s, t : Tree . GetInteger(MakePair(s, t))↑
[IntegerOfPair exception]

7. Left of a pair tree.

∀ s, t : Tree . GetLeft(MakePair(s, t)) = s

8. Left of a leaf.

∀ i : INTEGER . GetLeft(MakeLeaf(i))↑
[SubtreeOfLeaf exception]

11



Example: MIS for Trees ADT (4)

9. Right of a pair tree.

∀ s, t : Tree . GetRight(MakePair(s, t)) = t

10. Right of a leaf.

∀ i : INTEGER . GetRight(MakeLeaf(i))↑
[SubtreeOfLeaf exception]

11. Induction axiom for trees.

∀P : Tree→ BOOLEAN .

[∀ i : INTEGER . P (MakeLeaf(i)) ∧
∀ s, t : Tree . P (s) ∧ P (t)⇒ P (MakePair(s, t))]

⇒ ∀ t : Tree . P (t)

12



Example: MIS for Trees ADT (5)

12. Height of a tree.

∀ t : Tree . Height(t) =

if(IsLeaf(t),

1,

1 + if(Height(GetLeft(t)) > Height(GetRight(t)),

Height(GetLeft(t)),

Height(GetRight(t))))

13. Sum of a tree.

∀ t : Tree . Sum(t) =

if(IsLeaf(t),

GetInteger(t),

Sum(GetLeft(t)) + Sum(GetLeft(t)))

13



Trees Example: Oberon (1)

(*

Title: Binary Trees ADT

Interface:

INTERFACE Trees;
TYPE Tree;
PROCEDURE MakeLeaf(i: INTEGER): Tree;
PROCEDURE MakePair(s,t: Tree): Tree;
PROCEDURE IsLeaf(t: Tree): BOOLEAN;
PROCEDURE GetInteger(t: Tree): INTEGER;
PROCEDURE GetLeft(t: Tree): Tree;
PROCEDURE GetRight(t: Tree): Tree;
PROCEDURE Height(t: Tree): INTEGER;
PROCEDURE Sum(t: Tree): INTEGER;

END Trees.

*)

14



Trees Example: Oberon (2)

MODULE Trees;

IMPORT Out;

(* Types *)

TYPE

Tree* = POINTER TO TreeRec;

TreeRec =
RECORD

leaf: BOOLEAN; (* True if leaf; false if pair *)
int: INTEGER;
left: Tree;
right: Tree;

END;

15



Trees Example: Oberon (3)

(* Exceptions: *)

PROCEDURE IntegerOfPairException();
BEGIN

Out.String("Trees.IntegerOfPairException: A pair has no integer.");
HALT(1) (* Abort program *)

END IntegerOfPairException;

PROCEDURE SubtreeOfLeafException();
BEGIN

Out.String("Trees.SubtreeOfLeafException: A leaf has not subtrees.");
HALT(1) (* Abort program *)

END SubtreeOfLeafException;

16



Trees Example: Oberon (4)

(* Constructors: *)

PROCEDURE MakeLeaf*(i: INTEGER): Tree;
VAR t: Tree;

BEGIN
NEW(t);
t^.leaf := TRUE;
t^.int := i;
t^.left := NIL;
t^.right := NIL;
RETURN t

END MakeLeaf;

PROCEDURE MakePair*(t1,t2: Tree): Tree;
VAR t: Tree;

BEGIN
NEW(t);
t^.leaf := FALSE;
t^.int := 0; (* This value will never be used *)
t^.left := t1;
t^.right := t2;
RETURN t

END MakePair;

17



Trees Example: Oberon (5)

(* Selectors: *)

PROCEDURE IsLeaf*(t: Tree): BOOLEAN;
BEGIN

RETURN t^.leaf
END IsLeaf;

PROCEDURE GetInteger*(t: Tree): INTEGER;
BEGIN

IF IsLeaf(t) THEN
RETURN t^.int

ELSE
IntegerOfPairException()

END
END GetInteger;

PROCEDURE GetLeft*(t: Tree): Tree;
BEGIN

IF Isleaf(t) THEN
SubtreeOfLeafException()

ELSE
RETURN t^.left

END
END GetLeft;

18



Trees Example: Oberon (6)
PROCEDURE GetRight*(t: Tree): Tree;
BEGIN

IF IsLeaf(t) THEN
SubtreeOfLeafException()

ELSE
RETURN t^.right

END
END GetRight;

PROCEDURE Height*(t: Tree): INTEGER;
VAR h1,h2: INTEGER;

BEGIN
IF IsLeaf(t) THEN

RETURN 1
ELSE

h1:= Height(GetLeft(t));
h2:= Height(GetRight(t));
IF h1 > h2 THEN

RETURN 1 + h1
ELSE

RETURN 1 + h2
END

END
END Height;

19



Trees Example: Oberon (7)

PROCEDURE Sum*(t: Tree): INTEGER;
BEGIN

IF IsLeaf(t) THEN
RETURN GetInteger(t)

ELSE
RETURN Sum(GetLeft(t)) + Sum(GetRight(t))

END
END Sum;

END Trees.

20


