SE 2A04 Fall 2002

07 Recursion

Instructor: W. M. Farmer

Revised: 17 December 2002



What is Recursion?

e Recursion is a method of defining something in terms of
itself

— One of the most fundamental ideas of computing
— An alternative to iteration (loops)

— Can make some programs easier to describe, write,
and prove correct

e Both procedures and data structures can be defined by
recursion

— A set of procedures or data structures can be defined
by mutual recursion



Recursion Example: Factorial

MODULE Factorial;
IMPORT OQOut;

PROCEDURE FactRec*(x: INTEGER): INTEGER;
(* Computes the factorial function using (nontail) recursion. *)
BEGIN
IF x < 0 THEN
Out.String("Input must be nonnegative (ignore output).");
RETURN -1
ELSIF x = O THEN
RETURN 1
ELSE
RETURN FactRec(x - 1) * x
END
END FactRec;

END Factorial.



Semantics

e A recursive procedure can be understood as:

— A definition of a procedure with an infinite body
— An operational definition (little machine)

— An implicit definition of a procedure that satisfies a
certain property

e [ he use of recursion requires care and understanding

— Recursive definitions can be nonsensical (i.e.,
nonterminating)

— Sloppy use of recursion can lead to total confusion



Implementation

e Recursive procedures are usually implemented using a
call stack

— The stack contains one frame per procedure call
— The nesting depth of recursive calls does not need to
be calculated before execution

e If the nesting depth of recursive calls is infinite, the
procedure will run until the stack space is exhausted



Quality Issues

e Termination is shown using a well-founded ordering

— E.qg., a strictly decreasing natural number value

e Correctness can be proved using induction

o Efficiency

— In some cases, recursion can be highly inefficient in
the use of space

— In some cases, recursion can be executed in constant
space



Tail Recursion

e A procedure is tail recursive if nothing is left to do after
each recursive call in the procedure body

e [ail recursive procedures can be made to execute in
constant space:

— In some programming languages, e.g., Scheme, the
compiler ensures that tail recursive procedures execute
in constant space

— In other programming languages, tail recursive
procedures can be redefined using iteration (which
executes in constant space)



Tall Recursion Example: Factorial

MODULE Factorial;
IMPORT OQOut;

PROCEDURE FactTailRec*(x: INTEGER): INTEGER;

(* Computes the factorial function using tail recursion. *)
BEGIN

RETURN FactTailRecAux(x,1);
END FactTailRec;

PROCEDURE FactTailRecAux(x: INTEGER; accum: INTEGER): INTEGER;
BEGIN
IF x < O THEN
Out.String("Input must be nonnegative (ignore output).");
RETURN -1;
ELSIF x = O THEN
RETURN accum;
ELSE
RETURN FactTailRecAux(x - 1, accum * X);
END;
END FactTailRecAux;

END Factorial.



Example: MIS for Trees ADT (1)

e Imported modules: none required

e Interface:

INTERFACE Trees;

TYPE Tree;
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
END Trees.

MakeLeaf (i: INTEGER): Tree;
MakePair(s,t: Tree): Tree;
IsLeaf (t: Tree): BOOLEAN;
GetInteger(t: Tree): INTEGER;
GetLeft(t: Tree): Tree;
GetRight(t: Tree): Tree;
Height(t: Tree): INTEGER;
Sum(t: Tree): INTEGER;

e EXceptions:

— IntegerOfPair
— SubtreeOflLeaf



Example: MIS for Trees ADT (2)

e AXioms:

1. Leaves are leaves.
V't : Tree . IsLeaf(t) < di : INTEGER . t = MakeLeaf (%)

2. Pairs are never leaves.
Vs,t: Trees . ~IsLeaf(MakePair(s,t))

3. MakelLeaf is one-to-one.
V14,7 : INTEGER . MakeLeaf (i) = MakeLeaf(j) = ¢ =3

4. MarkPair is one-to-one.
Vs1,80,t1,to : Trees .
MakePair(si,t1) = MakePair(sqy,t1) =
(s1 =t1 ANso=1p)

10



Example: MIS for Trees ADT (3)

5. Integer of a leaf.
Vi : INTEGER . GetInteger(MakeLeaf(i)) = i

6. Integer of a pair.
Vs,t: Tree . GetInteger(MakePair(s,t))
[IntegerOfPair exception]

7. Left of a pair tree.
Vs,t: Tree . GetLeft(MakePair(s,t)) = s

8. Left of a leaf.
Vi : INTEGER . GetLeft(MakeLeaf (7))
[SubtreeOflLeaf exception]

11



Example: MIS for Trees ADT (4)

9. Right of a pair tree.
Vs,t: Tree . GetRight(MakePair(s,t)) =t

10. Right of a leaf.
Vi : INTEGER . GetRight(MakeLeaf (7)) T
[SubtreeOflLeaf exception]

11. Induction axiom for trees.
V P : Tree — BOOLEAN .
[Vi : INTEGER . P(MakeLeaf(i)) A
Vs,t:Tree. P(s) A P(t) = P(MakePair(s,t))]
= Vt:Tree. P(1)

12



Example: MIS for Trees ADT (5)

12. Height of a tree.
Vit : Tree . Height(t) =
if(IsLeaf(t),
1,
1+ if(Height(GetLeft(t)) > Height(GetRight(t)),
Height(GetLeft(t)),
Height(GetRight(t))))

13. Sum of a tree.
Vit : Tree . Sum(t) =
if(IsLeaf(?),
GetInteger(t),
Sum(GetLeft(t)) + Sum(GetLeft(t)))

13



Trees Example: Oberon

(*

Title: Binary Trees ADT

Interface:

INTERFACE Trees;

TYPE Tree;
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
END Trees.

*)

MakeLeaf (i: INTEGER): Tree;
MakePair(s,t: Tree): Tree;
IsLeaf (t: Tree): BOOLEAN;
GetInteger(t: Tree): INTEGER;
GetLeft(t: Tree): Tree;
GetRight(t: Tree): Tree;
Height(t: Tree): INTEGER;
Sum(t: Tree): INTEGER;

(1)

14



Trees Example: Oberon (2)

MODULE Trees;
IMPORT QOut;
(x Types *)

TYPE

Treex = POINTER TO TreeRec;

TreeRec =
RECORD
leaf:
int:
left:
right:
END;

BOOLEAN;
INTEGER;
Tree;
Tree;

(x True if leaf; false if pair *)

15



Trees Example: Oberon (3)

(x Exceptions: *)

PROCEDURE IntegerOfPairException();

BEGIN
Out.String("Trees.IntegerOfPairException: A pair has no integer.");
HALT(1) (* Abort program *)

END IntegerOfPairException;

PROCEDURE SubtreeOfLeafException() ;

BEGIN
Out.String("Trees.SubtreeOfLeafException: A leaf has not subtrees.");
HALT(1) (* Abort program *)

END SubtreeOfLeafException;

16



Trees Example: Oberon (4)

(* Constructors: *)

PROCEDURE MakeLeaf*(i: INTEGER): Tree;
VAR t: Tree;
BEGIN
NEW(t) ;
t~.leaf := TRUE;
t7.int := 1;
t~.left := NIL;
t~.right := NIL;
RETURN t
END Makeleaf;

PROCEDURE MakePair*(t1,t2: Tree): Tree;
VAR t: Tree;

BEGIN
NEW(t) ;
t~.leaf := FALSE;

t~.int := 0; (* This value will never be used x*)

t7.left := ti;
t7.right := t2;
RETURN t

END MakePair;

17



Trees Example: Oberon (5)

(x Selectors: *)

PROCEDURE IsLeaf*(t: Tree): BOOLEAN;
BEGIN

RETURN t~.leaf
END IsLeaf;

PROCEDURE GetInteger*(t: Tree): INTEGER;
BEGIN
IF IsLeaf(t) THEN
RETURN t~.int
ELSE
Integer0fPairException()
END
END GetInteger;

PROCEDURE GetLeft*(t: Tree): Tree;
BEGIN
IF Isleaf(t) THEN
SubtreeOfLeafException()
ELSE
RETURN t~.left
END
END GetLeft;

18



Trees Example: Oberon (6)

PROCEDURE GetRight*(t: Tree): Tree;
BEGIN
IF IsLeaf(t) THEN
SubtreeOfLeafException()
ELSE
RETURN t~.right
END
END GetRight;

PROCEDURE Height*(t: Tree): INTEGER;
VAR hl1,h2: INTEGER;
BEGIN
IF IsLeaf(t) THEN
RETURN 1
ELSE
hl:= Height (GetLeft(t));
h2:= Height (GetRight (t));
IF hl > h2 THEN
RETURN 1 + hil
ELSE
RETURN 1 + h2
END
END
END Height;

19



Trees Example: Oberon (7)

PROCEDURE Sum*(t: Tree): INTEGER;
BEGIN
IF IsLeaf(t) THEN
RETURN GetInteger(t)
ELSE
RETURN Sum(GetLeft(t)) + Sum(GetRight(t))
END
END Sum;

END Trees.

20



