= McMaster University =

Why are We Talking About Finite State Machines

Engineers use both science and mathematics to |
sure that their products will work.

The science of software is based on the finite s
machine (FSM) model.

mal

tate

You will be learning about this model in several

other courses. It plays a central role.

In this course, we will focus on using FSMs a:
design tool, not for theoretical reasons.

a

V)

The FSM model allows us to make sure that we have

not overlooked important cases.

The FSM model enables us to connect
mathematics that we use to the real world.

There are some Iinteresting theoretical results a
the power of finite state machines; these

the

boL
are

discussed in other courses. We will look at them as ¢

useful tool for software designers.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

1 FSM3.slides 9/14/98

= McMaster University =

What is the State of a System?

State Is primitive concept. It can only be defir
indirectly.

A description of the state is a description of |
condition of that machine that includesll
iInformation needed to predict the machine’s fut
response to any external stimuli. (input)

1ed

[he

ure

Two identical machines, both in a specified state will

respond identically.

Certain aspects of the state (e.g. temperature

location) may be irrelevant to the behaviour that
are observing; these aspects can be ignored.

The finite state model is the way that we ignore th
Irrelevant aspects of the physical state.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

2 FSM3.slides 9/14/98

we

0SE

= McMaster University =

The Distinction Between Finite and Infinite State
Machines

Physical devices have an infinite number of states

(ignoring quantum physics)
No upper bound to the number of states

Digital Devices can be treated as if the numbe
states was finite.

This i1s an abstraction.

We abstract from (ignore) the period of transit
between stable states.

Digital machines must be built so that we can sa
do that.

That's not easy. It is one of the main tasks
computer engineers. As software engineers we
usually assume that they have done their
correctly.

r Of

on
fely

of
ca
job

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

3 FSM3.slides 9/14/98

= McMaster University =

Example: A Chair on the Floor

A chair is a physical device with an effective

Infinite number of states.

We may want to ignore, temperature, weight, small
scratches, position of the centre of gravity on this

earth, etc.

If we only care about its position relative to the floor

(l.e. its attitude), it still has an infinite number
states, but ...

Only a finite number of those as&able

of

Often we can ignore the transition time, the time in
which the chair is moving between those stable

states.

If we can ignore that transition time, and if we only
care about the attitude relative to the floor, we can

analyse the chair as if it were a finite state machi

ne.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

4 FSM3.slides 9/14/98

= McMaster University =

Digital Computers are Finite State Machines

All digital computers have been designed to behave

as if they were finite state machines.

They are built from a finite number of components;

each component has a finite number of stable st:

When reality shows through, we call a technician!

Ates

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

5 FSM3.slides 9/14/98

= McMaster University =

Three Important Characteristics of FSMs

(1) “Almost right” has no real meaning.

«“Almost right” assumes continuity.
*\With digital machines “almost” means “not”.

(2) Youcan get things exactly right.

*You cannot cut a string exactly in half.
*You can get software exactly right.

(3) Most of the mathematics that you have learned

(e.g. arithmetic, calculus) must be applied with
care.

Differentiation assumes continuity
*\We can only approximate continuity

This makes some fundamental changesin the
nature of engineering The concept of tolerance

must be refined. Differential calculus must be
used with caution.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

6 FSM3.slides 9/14/98

= McMaster University =

Why are Modern Computers Digital?

There was once competition between digital ;
analogue computers.

and

Norbert Wiener and John von Neumann - had two

conflicting visions.

Wiener's analogue computers werenadelof the
system under study.

Behaved analogously - circuits had the same

differential equations as the system modelled.

Digital Computer - calculated approximate solutions

to those equations.

Digital Computer - in many ways harder to use
*You have to figure out how to solve the equations,

*You have to deal with a machine that is fundamentally

different from the system of interest.

John wn Neumann wn! Why?

egreater reliability

saccuracy that is limited only by the size (number
elements)

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

7 FSM3.slides 9/14/98

of

= McMaster University =

The Finite State Machine Model

The most common view of the finite state machine i looks like a
black box with wires coming in to it, called the inputs, and
wires going out of it, called the output.

—>
—
INPUT DIGITAL COMPUTER|——» OUTPUT
—
—>

JLOC

The machine changes its state at discrete “points” in time
The clock determines when state changes can happen.

The next state and the output ateterminedoy present
state input.

That is all that any digital machine does!
It is a boring, and endless, cycle.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

8 FSM3.slides 9/14/98

= McMaster University =

When is a FSM non-deterministic

“determinet by “constrained.

things unspecified.

ebecause we don't know, or
e because we don't care.

Applications of the non-deterministic model:

*Designing families of programs. - Leaving thin
‘open”.
*Designing programs to be as economical as pos
(by don’t care conditions)
*Designing programs where we are uncertain (d
know conditions).

For non-deterministic machines, replace

The non deterministic model allows us to leave some

gs
Sible

on’t

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

9 FSM3.slides 9/14/98

= McMaster University =

How Can We Describe FSMs?

If you wantto describea finite statesystem.hereis
the procedure that you should fallo

(1) Enumerate the set of states of the machine.

(2) Enumerate all of the possible input and output

conditions. (input alphabet, output alphabet).
(3) Describe two functions/relations.

e The NS function/relation describes the next state

(s,1).
« The OUT function/relation describes the output

(s,i).
For small, simple machines, use a table.

“In theory” you can always use a table, but
practice we will have to use more power
(convenient) methods.

Nonetheless, the state transition table underlies ¢

our methods of describing computers and progra

for

for

IN

ful

all O
ms

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

10 FSM3.slides 9/14/98

= McMaster University =

Example: Programming a Chinese Abacus

First attempt: A procedure in the form of rules:

o If there are two lower beads up and you are add-
Ing two, move two beads up.

o If there are 4 lower beads up and you are adding
3, move 1 of the upper beads up and then 2 of the
lower beads down.

« If both upper beads are up, move both upper
beads down and add one to the column to the left.

This will take a lot of rules.
There may be ambiguities.
There may be missing cases.

We can instruct the operator by a table so that we cal
be sure we covered everything.

Being systematicis the keyto goodprogramming.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

11 FSM3.slides 9/14/98

= McMaster University =

Assigning (arbitrary) Numbers to States.

We must make sure we get them all!

State Assignments

State Upper | Lower | value
1 0 0 0
2 0 1 1
3 0 2 2
4 0 3 3
5 0 4 4
6 0 5 5
7 1 0 5
8 1 1 6
9 1 2 7

10 1 3 8

11 1 4 9

12 1 5 10
13 2 0 10
14 2 1 11
15 2 2 12
16 2 3 13
17 2 4 14
18 2 5 15

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

12 FSM3.slides 9/14/98

= McMaster University =

An Instruction Table for the Abacus
What to do with the beads for this column || What to add to left column
NSl 1] 23| 4/ 5/ 6| 7/ 8 9| ouf12BU56|7][8]|9
112|3| 4|5 6/ 8 9 10 11 1l opploplojo|o]o
23| 4| 5| 6| 8| 9/ 10 11 12 2l ppblpojplo|0|0|0O|O
3|4|5| 6| 8| 9|10 11 12 14 3l poojojofo|0]|Q
4|15| 6| 8| 9|10 11 12 14 15 4l ojo|ojojo|o|0|0|0
5|6| 8| 9|10 11 12 14 15 1B 5] ojojojo|o|0|0|0O|0O
6 | 8| 9|10 11 12 14 15 16 17 6] |0|0|0(0|0|0|0O|O|O
718|910 11 12 14 15 16 17 7] |0|jojo(o|0|0|0|0Ol O
8 |9|10/ 11| 12 14 1% 16 1F 18 8] [0(0|j0|0|0|0|0| OO
9 |10| 11| 120 14 15 16 1f 18 8 9] [ojojo|o|0|0|0|O]1
10| 11| 12| 14 15 16 17 1B 8 9 14 |o|o|o|0|0|l0|0O] 11
11| 12| 14/ 15 164 17 18 8 9 10 14 |o|o|o|0|0f0|1 11
12| 14| 15/ 1§ 17 18 8 9 1p 11 14 |o|o|o|oj0f1/ 111
13| 14| 15/ 16 17 18 8 9 1p 11 14 |o|o|o|oj0f1/ 111
14 | 15| 16| 17 18 9 10 1p 12 14 |o|o|o|o|1|1/ 111
15 | 16| 17| 18 10 11 12 14 14 |ofo|o|1]1|1/ 111
16 | 17| 18 10 11 12 14 15 14 |ofo|1|1]1|1/ 111
17 | 18 19 11 12 14 15 16 11 [oj1|1]1]1/1/1 11
18| 8| 9| 10/ 11 12 14 15 1p 17 1e|111111111
This “program” (or set of programs) turns the abacus into a hew
machine. It is a finite state machine and its behaviour is described by
the above table. The old commands were in terms of moving
individual beads. The new commands are addition commands.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

13 FSM3.slides 9/14/98

= McMaster University =

Another Instruction Table for the Abacus
What to do with the beads for this column || What to add to left column

NS| 1] 2] 3] 4| 5| 6] 7| 8 o oul 1 2845 1|7[8]9
1|23 4a]5] 7] 8 919 11/ 1] 0o p b plofolofolo
213/ 4|5| 7 8/ 910 11 131 2|l poploplololofo]o
31457 8| 9|10 11 13 14/ 3| pplojojofo|o|o]|oO
4157 8| 9|10 11 13 14 15/ 4] opjojofojo|o|o]0]|O
5178|910 11 13 14 15 150 5| P o |o|o(o|o|0|0]|O
6 |8 9|10 11 13 14 15 16 17y 6| [o[ojo|o|o|0|0|0O|O
7 18| 9|10 11 13 14 15 16 17y 7| lo[ojo|o|o|0|0O|0O|O
g8 |o|10{11 13 14 15 16 17 18 8| |lojo|o|o|0|0|0| 0| O
o |10] 11| 13 14 15 16 17 18 8 9]l |[olofo|o|o|o|o0|o0O]1
10| 11| 13] 14 15 16 17 18 8 9| 1d |o|o|o|o|o|o0|Of 1| 1
11y 13| 14, 15 16 17 18 8 9 10 11 0O/0j0]|0|0O|0] 1] 1 1
12 1 14| 15 16 174 18 § 9 10 11 12 0O/0j0|O0|O|1]1]1 1
13114| 15 16 174 18 § 9 10 11 lq000001111
14 | 15| 16| 17| 18 9 10 11 13 lll O[0|O0O(O]1|1|1 1 1
15| 16| 17| 18 10 11 18 14 15 O|0|O0O(1]1|1|1 1 1
16 § 17| 18, 8| 9| 10 11 13 14 15 164 O|0|1(11|11 1 1
17| 18 9| 10 11 13 14 1b 1B 17|011111111
18y 8| 9| 10| 11 13 14 15 1p 1 161111111111
This is another “program” in which we move the five lower
beads down and replace them with an upper bead whenever w
can. It works just as well, gets the same answers.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

14 FSM3.slides 9/14/98

McMaster University

Another Instruction Table for the Abacus

What to do with the beads for this column || What to add to left column

NS| 1| 2| 3| 4|, 5/ 6| 7| 8 9 OutT 1 2 B 4 b 6|78
1123 4| 5| 7| 8 9 10 11 11 0 D pDOO|0]|O0]O
213 4| 5| 7] 8| 910 11 1 21 0D PO O|W0O]|OIO
314|577 8| 9,10 113 1 2 3] 0 DDODOO|WO]|O]|1
4 15| 78] 9|10 113 1 2 3 44y 0 OOOJOI0O|I1|1
Sy 78| 910 1y 1 2 3 4 5 ODDODOONTI|1|1
6|18 9|10 11 1, 2| 3| 4 5 6f 0 OD O 1|1 |1]1
/718|910l 113 1| 2 3| 4 5 /7y OODOITIT1I 1|1
819|10| 11 1| 2| 3| 4 5 7 gy O 0PIl
910,11 1| 2| 3| 4 5 7 8 91 00011111

10y 11 1| 2| 3| 4| 5 7 8 9 10 04 1 112111

11y 1| 2 3| 4, 5| 7| 8 9 10 11y 1.4 1 1121 (1|1

121 2| 3| 4| 5| 7| 8 9| 10 11 12y o1 111111

131 2| 3| 4| 5| 7| 8 9| 10 11 13 o1 11121111

14y 3| 4| 5| 7| 8| 9| 10 11 1B 14 11211111111

15y 4| 5| 7| 8| 9| 10 11 13 14 15| 11112111111

16y 5| 7| 8| 9| 10 11 13 14 1b 161 11111111

17y 5| 8] 9| 10 11 13 14 1b 16 17| 1111|111 |1|1

18y 8| 9| 10| 11} 13 14 15 1p 17 1%1 111111/ 1|1

9
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

This version does a “carry” as soon as possible. It doesn’t really use al
of its states and it has a reduced capacity. The maximum value of &

digit is 9.

Note that the highest number in rows 1 - 11 is 11. The first 11 rows
describe aterminal submachirie Are the other rows needed?

15 FSM3.slides

Software Engineering Programme

“connecting theory with practice”

Department of COMPUTING AND SOFTWARE

9/14/98

= McMaster University =

Why are we discussing this?
We don't really care about the abacus.

Tables like this are our way of being systematic,

being sure we cover all our cases, being precise,

reducing a complex problem to a simple one.

Designing finite state machines like this is a simple

form of programming.
Some of the best ppgrams are table driven.

Even if we don’t use the table directly, making tables

like this Iis a systematic way of covering all of t

he

cases and thinking about a problem a little bit at a

time.

Of course, we will have to extend this technigue

allow us to deal with more cases.
This is the “fall back” technique. We use it wh

| -4

to

en

nothing else works. It is the basis for all other

techniques.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

16 FSM3.slides 9/14/98

= McMaster University =

An example: the “ABA” acceptor

This Is a description of a simple machine that will

output “1” only If the most recent three inputs were
HAH, HB”’ HA”.

(initial state = 1)

NS

A B C ouT | A B C

1 2 1 1 1 0 0 0
2 2 3 1 0 0
3 2 1 1 3 1 0 0

The state set is {1, 2, 3}.
The input set is {A, B, C}.
The output set is {0, 1}.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

17 FSM3.slides 9/14/98

= McMaster University =

The ABA or BAB Acceptor (initial state = 1)

This Is a description of a machine that will output
“1" If and only Iif the most recent three inputs were:
“A”, “B”, “A” and a “2” if and only if the most recent
three inputs were: “B”, “A”,“B”.

OouT A B C

o W N PR
N 01 o1 N NP
A W WD W@
R P P~ |0
o W N P
O r O O O

N O O O O
o O O O O

The state setis {1, 2, 3, 4,5}.
The input set is {A, B, C}.
The output set is {0, 1, 2}.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

18 FSM3.slides 9/14/98

= McMaster University =

Another ABA Acceptor - an Example of
Nondeterminism (initial state = 1)

NS A B C ouT A B C
1 | 24 1 1 1] 0 0 o0
2 | 24 3 1 2 |0 0 o0
3 | 24 1 1 3 /1 0 o0
4 | 24 3 1 4 | o 0 O

19

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

FSM3.slides 9/14/98

= McMaster University =

Applying Finite State Machines

In theory any computer can be described by suc

table, but theory is not our concern in this class.

h &

We are interested In finite state machines becaus
they allow us to analyse the behaviour of our

programs completely.
In practice the tables are much too large.
However,

 We know that computers can in principle be descri
completely and analysed.

 We know that there is no magic, no giant brain.
 We know that we can be systematic in our analysi
 \We know that we can be complete in our analysis

If we can learn to describe classes of states

bed

S.

ane

classes of inputs, we can describe bigger machines
Eventually tables of this sort will be the way that we

write specifications for programs.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

20 FSM3.slides 9/14/98

= McMaster University =

Equivalent Finite State Machines

This ABA Acceptor is equivalent to the previo
one.

Initial state = 1

NS | A B C OutT| A B C
1 3 1 1 1 0 0 0
2 3 1 1 1 0 0
3 3 2 1 3 0 0 0

us

Two finite state machines are equivalent if you could

not tell one from the other if the only things you c
observe were the input and the output.

The number of states I1s not visible outside of
box.

an

the

Two equivalent machines need not have the sam

number of states.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

21 FSM3.slides 9/14/98

= McMaster University =

Equivalent Finite State Machines
This machine too is an ABA acceptor.

initial state = |
NS | A B C OUT| A B C
1 4 1 1 1 0 0) 0)
2 3 1 1 2 1 0 0
3 4 2 1 3 0 0 0
4 3 2 1 4 0 0 0

All three machines are equivalent.

Equivalent machines are indistinguishable from

outside.
In this machine, states 3 and 4 are equivalent.
Equivalent states are indistinguishable from outs

Machines where no two states are equivalent
calledminimal

Minimal machines are not necessarily better in
way!

de.
are

any

Software designers often build faster programs by

having extra, equivalent, states.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

22 FSM3.slides 9/14/98

= McMaster University =

Designing a digital machine

The following pagesillustrate how we apply the
following procedure:

(1) List the input and output values.

(2) List the historical conditions that might be
relevant. these your initial set of states.

(3) Form two tables with one row for each state and

one column for each input value.

(4) In the first table, list the next states for each st
Input combination. Add states if needed.

(5) In the second table, list the outputs for each sf
iInput combination. Add states if needed.

The result may not be minimal!

ate;

[ate

There are procedures for reducing machines ftc

minimal machines.

You will learn about these procedures in your lo
design course.

gic

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

23 FSM3.slides 9/14/98

= McMaster University =

Example: Designing an ABA Machine

The Input values are “A”, “B”, “C”. The output
values are “07, “1”.

For the “Historical Conditions”, Do we need the last

three inputs, i.e.. AAA, AAB, AAC, ABA, ABB,
ABC, ACA, ACB, ACC, BAA, ...
or only?

AA, AB, AC, BA, BB, BC, CA, CB, CC

We name the latter 1 ... 9 and complete the table:
below:

Initial State = 9

NS
1 (AA)
2 (AB)
3 (AC)
4 (BA)
5 (BB)
6 (BC)
7 (CA)
8 (CB)
9 (CC)

>
o
C
—
@

I N N N S

o U1 N oo O N oo o1 MV @

C
3
6
9
3
6
9
3
6
9

0O 00O o0 O o r o

© 0 ~N o o b w N PR
o 0o 0o oo o o o oW
O O O o o o o o O

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

24 FSM3.slides 9/14/98

= McMaster University =

Example: Designing an ABA Machingcontinued)

Initial State = 9
NS

>
o
C
—
@

1 (AA)
2 (AB)
3 (AC)
4 (BA)
5 (BB)
6 (BC)
7 (CA)
8 (CB)
9 (CC)

ooml\)ooo'lmoocﬂl\)w

N~ RPN PEPEN AR
© O W oW o w o o w O
© 0 ~N o oM w NP
OOOOOOOHO:D
o 0o 0o oo o oo oW
O O O o 0o O o o O

states 1, 4, 7 are identical.
3, 6, and 9 are identical.

5 and 8 are identical.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

25 FSM3.slides 9/14/98

= McMaster University =

Example: Designing an ABA Machingcontinued)

This leads to a nereduced table:

Initial State = 3
NS | A B C OuT| A B C
1 1 2 3 1 0 0 0
2 1 4 3 2 1 0 0
3 1 4 3 3 0 0 0
4 1 4 3 4 0 0 0

Now, states 3 and 4 are identical. The initial state car
be either 3 or 4.

The final result of our “design”..

Initial State = 3
NS | A B C OUTI A B C
1 1 2 3 1 0 0 0
2 1 3 3 2 1 0 0
3 1 3 3 3 0 0 0

Note that we came up with this design as a set of
simple, systematic steps.

There are more imaginative ways to approach this
problem but this one will always work.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

26 FSM3.slides 9/14/98

= McMaster University =

Designing Cruise Control Software:
Inputs

Switch system on

Switch system off

Lock current speed
Suspend control
Resume control

| b W N

States

System off

System on, no speed stored
System has speed stored but is not engaged
System has speed and is engaged

Al WOIN| PP

Next State

3
1

NS 4 5
1 1
3/47? 2 2
3 4
3 4

3/4?
4

W N DN -

Al WOIDN| P
Pl R R RN

Note: Actual speed control is a separate (simulat
analog control system.

An alternate design might do more error detection.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

27 FSM3.slides 9/14/98

= McMaster University =

Networks of Finite State Machines

Nobody can design a real computer system as
single finite state machine!

The state table would be far too large.

The secret to designing both hardware and softwar:
IS modularisation

Modularisation means designing something as a se
of components, each of which can be desighec
without knowledge of the details of the others.

We can build networks of finite state machines in
which:

the output of one machine is the input to another,
sinputs are “split” and sent to more than one machine

soutputs from several machines are combined to be
considered as a single output.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

28 FSM3.slides 9/14/98

= McMaster University =

Machines connected in “series”.

ONE TWO

In this example, the inputs and outputs are pairs o

elements.

The output alphabet of machine ONE must be
same as the input alphabet of machine TWO.

We assume that the machine clocks
synchronised. Two machines agnchronised they
always change state at the same time.

The maximum number of network states Is

the

are

the

product of the number of states of the two machines

It can be less if some combinations cannot happ

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

29 FSM3.slides 9/14/98

en.

= McMaster University =

An input to the network (or the output of one of t
machines can be “split”, i.e. go to several inputs.

Several machines may be combined (by puttin

Other ways to build networks

box around them as in the following example

THREE
- » TWO
x_»
-
> » ONE >/

30

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

FSM3.slides 9/14/98

he

g c

= McMaster University =

Why do we want Networks?

Most real finite state machines many states
enumerate.

Even with patience, the complexity would lead
errors.

We need to “divide and conquer” the complexity.

What we study now with FSMs, we will do later wi
programs.

Example: A “ABA or BAB” machine

ABA
acceptor

\

combiner|__,

BAB
acceptor

tC

to

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

31 FSM3.slides 9/14/98

= McMaster University =

The “Combiner” Machine

It is a one state machine. (combinatorial logic)
Its tables are:

NS ‘ (0,0 (1,0 0,1) 1,1)
1 \ 1 1 1 1

ouT ‘ (0,0 (1,0 0,1) 1,1)
\ 0 1 2 *

“*’Indicates “don't care”, a most important concep

We don’t care because we can never have both /
and BAB at the same time.

We often write programs (design machines) in wr
certain cases do not arise.

To avoid “overspecification”, we indicate that t
output Iin those cases can be anything that
constructor wants.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

32 FSM3.slides 9/14/98

\B/
lich

he
the

= McMaster University =

Summary

(1) We need better ways of describing large tables.

(2) Any computer can be viewed as a finite state mack
- when the hardware is working properly

(3) Theoretically one can design computers by state
enumeration.

(4) This is a “fall back” approach.

(5) Decomposition is the key to mastering complexity.

(6) We want simple networks of simple machines.

(7) Always reduce a large programming problem to 3
sequence of simple ones.

(8) Picking the component machines is the critical st¢
(9) Understanding the concept of state is the “science
programming.

(10)Remember the true meaning of state: the state is
you need to know to predict the future behaviour
that machine. In a network, the states of the individ
machines define classes of network states.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

33 FSM3.slides 9/14/98

1ine

T~

2p.
N O.I:

all
of
ual

= McMaster University =

Dealing With Larger Machines

Make Assertions about classes or sets of states.

Example: In all states with an even number of
widgets,

There is a well developed mathematical notation for
talking about sets.

You will be learning about this in your other courses.
The next slide summarises common notation.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

34 FSM3.slides 9/14/98

= McMaster University =

Notation for sets

{x,y,z} enumeration - the set containing x, y, z
| such that

{x | <condition>}The set of elements such that x satisfies

the condition.
ALB A iIs a subset of B (could be identical)

ALB A Is a subset of B and smaller than B. (A I
propersubset of B)

V)

ALB set of elements in either A or B

AnB set of elements in both A and B

A-B set of elements of A that are notin B

- (B) set of elements in Universe not in B (the

complement of B)

XOA X Is an element of A

{} an empty set

Only combine sets from the same Universe.

Even empty setsiust have an associated Universe.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

35 FSM3.slides 9/14/98

= McMaster University =

Evaluating Predicate Expressions

If P and Q are predicat@essions,

(1) (a) (Ux,P) istrue if P is true for all values of x
In our Universe. Otherwise, it false

(2) (b) (IX,P) istrueif P is true if there is a value of

X In our Universe for which P igue. Otherwise,
it is false

(3) (c) (ALXQ) istrueif both P and Q artue.
Otherwise, it idalse

(4) (d) (P)XQ) istrue if either P or Q argrue.
Otherwise, it idalse

(5) (e)-(P) istrue if P is false Otherwise, it idalse

(6) (f) (P)J (Q) istrueif either P isfalseor Q istrue.
Otherwise, it idalse

The symbols are read, “for all”, “there exist:
“and”, “or”, “not”, and “implies”.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

36 FSM3.slides 9/14/98

= McMaster University =

Summary of Mathematical Terms

A relationis a set of pairs (2-tuples).

The set of values that appear as the first element of a p
called thedomainof that relation.

The set of values that appear as the second element of
Is called the relation'sange

A functionis a relation such that for any given element

In its domain, there is only one pair (x,y) in the function.

If (a,b) is in the function F, “F(a)” means b, often call
“the value of F at’a

Domains and ranges may include tuples. It may make s
to write “F((a,b))”, “F((a,b,c))”, and “F(F((a,b,c)))".

Functions whose domain is smaller than the universe
calledpartial functions

Many of the functions that arise in software developmn
will be partial functions.

air I

a pa

’X1

ed

ens

> al€

lent

A predicateis a function whose range contains no members

other thartrue andfalse

For any set, X, thecharacteristic predicateof X is a

predicate whose domain is the universe from which X is

drawn, and whose value, for b,ligue if and only if b is a
member of X.

37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

FSM3.slides 9/14/98

= McMaster University =

Predicative Descriptions of Finite State Machine

Real computers have so many states that it Is
iImpractical to describe machines by enumerating the
states.

Decomposing a machine into a network it is not
always sufficient. Even simple, regular machines|car
have many states.

We have to find another way to describe the Next
State and Output functions.

Because predicates can characterise sets, and her
functions, we can use predicate expressions {c
describe finite state machines.

These same mathematical concepts will be used t
describe programs.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

38 FSM3.slides 9/14/98

= McMaster University =

The ABA machine revisited.

Initial State = 1
NS | A B C OouT | A B C
1 3 1 1 1 0 0 0
2 3 1 1 2 1 0 O
3 3 2 1 3 O 0 O

If we don’t want to enumerate all the states and inputs
can describe the function by its characteristic predica

The following characterises the NS function:

((NS =1)0

((((s=1)U(s=2)JA(1=B) L@ =0C))
O((s=3)u(=0))0

(NS=2)O(s=3)I(=B)) 0O

(NS =3)0(1=A))

The following characterises the OUT function:

(OUT =1D0((s=2)d(i=A) O

(OUT =0)0(=((s=2)0(@ =A))

5> WE
te.

For this example, the table is simpler than the

characteristic predicate.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

39 FSM3.slides 9/14/98

= McMaster University =

Predicative Descriptions

When do the help?

Help if and only if there is regularity that can be

exploited.
*Help most when there are many states
«Can also be (helpfully) written in tabular form.

Most real programs meet these constraints.
This i1s why your logic course is so important.

Logic will allow you to describe complex systems

precisely.

There are tools to help you check your descripti
and that will confirm that they have or do not he
certain properties.

ons
Ve

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

40 FSM3.slides 9/14/98

= McMaster University =

A Predicative Description of a Machine that
Counts Up and Down Between 0 and 100

((s < 100)XIN=1)O0(NS=s+ 1)
((s= 100)0 (IN = 1) (NS = 100)) O
(s>0)0(IN=2) ONS=s-1)) 0
((s = 0) O(IN = 2) 0 (NS= 0))

((s < 100)(IN = 1) 0 (OUT = s + 1))
((s= 100)0(IN = 1) 0 (OUT = 100)) O
((s>0)0(N=2) O(UT=s-1))0
((s =0) O(IN = 2)0(OUT= 0))

Descriptions of this sort are better than enumerative
descriptions.

Descriptions of this sort are still hard to read and
check.

Can we use tables to make things better?

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

41 FSM3.slides 9/14/98

= McMaster University =

Using tables to define functions.

The functions that describe software are defi
“piecewise - different definitions under differe
conditions.

In this circumstance, one-dimensional expressions cé
hard to read.

Conditional expressions with many cases bect
complex.

We can use a table to make things easier to read.
The columns headings are predicate expressions.
The row headings are the names of variables.

The column headings should be mutually exclusive.
The table entries are terms.

w<0 w=0 w >0
X= X+Ww+(X+2-(Q X—W
y= y+2 X+y Ky
Z= Z-W Z s w

ned
Nt

AN b

DIME

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

42 FSM3.slides 9/14/98

= McMaster University =

Example of a Table Defining a Relation

(O, (L<i<n) O[-(0, (1 <i<n)
(‘Ali] = %)) O (Al] = %))

| A[l] = X true
present’= true false

A Is a real Array

X is a real variable

| IS an integer variable
J IS an integer variable

present, a boolean variable, can have valuase®,
and ‘fals€’.

We will discuss these tables more carefully later.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

43 FSM3.slides 9/14/98

McMaster University

Note how the useof predicatesandtalular notation

Tabular Description of the Counter
Normal Function Table Describing NS(s,IN)

NS = IN=1 IN =2
s=0 s+1 0
0 <s <100 s+1 s-1
s =100 100 s-1

H,

Normal Function Table Describing OUT(s,IN)

OuUT= IN=1 IN =2

s=0 s+1 0
0 <s <100 s+1 -
s=100 100 S -

H,

H,

helpsin gettingdescriptionghatarebothpreciseand

easy to read.

44

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

FSM3.slides

9/14/98

= McMaster University =

Themes in these lecture:

1. Finite State Machine Model is a good design tool.

2. Using the FSM model, we can be disciplined and
check for complete coverage.

3. Logic and Tables makes it practical to do this.

Engineerswork from specificationsand produce
well- documented pioducts.

This should be no-less-true for software.
But, it is not “the usual way”.

Computers are fundamentally simple.

We have to work to keep them that way.

Divide work into small “modules”.

Encapsulate modules by specifications.

Keep the specification simpler than the program.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

45 FSM3.slides 9/14/98

	Why are We Talking About Finite State Machines
	Engineers use both science and mathematics to make sure that their products will work.
	The science of software is based on the finite state machine (FSM) model.
	You will be learning about this model in several other courses. It plays a central role.
	In this course, we will focus on using FSMs as a design tool, not for theoretical reasons.
	The FSM model allows us to make sure that we have not overlooked important cases.
	The FSM model enables us to connect the mathematics that we use to the real world.
	There are some interesting theoretical results about the power of finite state machines; these ar...

	What is the State of a System?
	State is primitive concept. It can only be defined indirectly.
	A description of the state is a description of the condition of that machine that includes all in...
	Two identical machines, both in a specified state will respond identically.
	Certain aspects of the state (e.g. temperature, location) may be irrelevant to the behaviour that...
	The finite state model is the way that we ignore those irrelevant aspects of the physical state.

	The Distinction Between Finite and Infinite State Machines
	Physical devices have an infinite number of states (ignoring quantum physics)
	No upper bound to the number of states
	Digital Devices can be treated as if the number of states was finite.
	This is an abstraction.
	We abstract from (ignore) the period of transition between stable states.
	Digital machines must be built so that we can safely do that.
	That's not easy. It is one of the main tasks of computer engineers. As software engineers we can ...

	Applying Finite State Machines
	In theory, any computer can be described by such a table, but theory is not our concern in this c...
	We are interested in finite state machines because they allow us to analyse the behaviour of our ...
	In practice, the tables are much too large.
	However,
	• We know that computers can in principle be described completely and analysed.
	• We know that there is no magic, no giant brain.
	• We know that we can be systematic in our analysis.
	• We know that we can be complete in our analysis.

	If we can learn to describe classes of states and classes of inputs, we can describe bigger machi...

	Example: A Chair on the Floor
	A chair is a physical device with an effectively infinite number of states.
	We may want to ignore, temperature, weight, small scratches, position of the centre of gravity on...
	If we only care about its position relative to the floor (i.e. its attitude), it still has an inf...
	Only a finite number of those are stable.
	Often we can ignore the transition time, the time in which the chair is moving between those stab...
	If we can ignore that transition time, and if we only care about the attitude relative to the flo...
	CLOC K

	When is a FSM non-deterministic
	For non-deterministic machines, replace “determined” by “constrained”.
	The non deterministic model allows us to leave some things unspecified.
	• because we don't know, or
	• because we don't care.

	Applications of the non-deterministic model:
	• Designing families of programs. - Leaving things “open”.
	• Designing programs to be as economical as possible (by don’t care conditions)
	• Designing programs where we are uncertain (don’t know conditions).

	Equivalent Finite State Machines
	This ABA Acceptor is equivalent to the previous one.
	initial state = 1

	1
	3
	1
	1
	1
	0
	0
	0
	2
	3
	1
	1
	2
	1
	0
	0
	3
	3
	2
	1
	3
	0
	0
	0
	Two finite state machines are equivalent if you could not tell one from the other if the only thi...
	The number of states is not visible outside of the box.
	Two equivalent machines need not have the same number of states.

	Equivalent Finite State Machines
	This machine too is an ABA acceptor.
	initial state = l

	1
	4
	1
	1
	1
	0
	0
	0
	2
	3
	1
	1
	2
	1
	0
	0
	3
	4
	2
	1
	3
	0
	0
	0
	4
	3
	2
	1
	4
	0
	0
	0
	All three machines are equivalent.
	Equivalent machines are indistinguishable from outside.
	In this machine, states 3 and 4 are equivalent.
	Equivalent states are indistinguishable from outside.
	Machines where no two states are equivalent are called minimal.
	Minimal machines are not necessarily better in any way!
	Software designers often build faster programs by having extra, equivalent, states.

	Designing a digital machine
	The following pages illustrate how we apply the following procedure:
	(1) List the input and output values.
	(2) List the historical conditions that might be relevant. these your initial set of states.
	(3) Form two tables with one row for each state and one column for each input value.
	(4) In the first table, list the next states for each state/ input combination. Add states if nee...
	(5) In the second table, list the outputs for each state/ input combination. Add states if needed.
	The result may not be minimal!
	There are procedures for reducing machines to minimal machines.
	You will learn about these procedures in your logic design course.

	Example: Designing an ABA Machine
	The Input values are “A”, “B”, “C”. The output values are “0”, “1”.
	For the “Historical Conditions”, Do we need the last three inputs, i.e.: AAA, AAB, AAC, ABA, ABB,...
	AA, AB, AC, BA, BB, BC, CA, CB, CC
	We name the latter 1 ... 9 and complete the tables below:
	Initial State = 9

	1 (AA)
	1
	2
	3
	1
	0
	0
	0
	2 (AB)
	4
	5
	6
	2
	1
	0
	0
	3 (AC)
	7
	8
	9
	3
	0
	0
	0
	4 (BA)
	1
	2
	3
	4
	0
	0
	0
	5 (BB)
	4
	5
	6
	5
	0
	0
	0
	6 (BC)
	7
	8
	9
	6
	0
	0
	0
	7 (CA)
	1
	2
	3
	7
	0
	0
	0
	8 (CB)
	4
	5
	6
	8
	0
	0
	0
	9 (CC)
	7
	8
	9
	9
	0
	0
	0

	Example: Designing an ABA Machine (continued)
	:
	Initial State = 9
	1 (AA)
	1
	2
	3
	1
	0
	0
	0
	2 (AB)
	4
	5
	6
	2
	1
	0
	0
	3 (AC)
	7
	8
	9
	3
	0
	0
	0
	4 (BA)
	1
	2
	3
	4
	0
	0
	0
	5 (BB)
	4
	5
	6
	5
	0
	0
	0
	6 (BC)
	7
	8
	9
	6
	0
	0
	0
	7 (CA)
	1
	2
	3
	7
	0
	0
	0
	8 (CB)
	4
	5
	6
	8
	0
	0
	0
	9 (CC)
	7
	8
	9
	9
	0
	0
	0
	states 1, 4, 7 are identical.
	3, 6, and 9 are identical.
	5 and 8 are identical.

	Example: Designing an ABA Machine (continued)
	This leads to a new reduced table:
	Initial State = 3

	1
	1
	2
	3
	1
	0
	0
	0
	2
	1
	4
	3
	2
	1
	0
	0
	3
	1
	4
	3
	3
	0
	0
	0
	4
	1
	4
	3
	4
	0
	0
	0
	Now, states 3 and 4 are identical. The initial state can be either 3 or 4.
	The final result of our “design”:.
	Initial State = 3

	1
	1
	2
	3
	1
	0
	0
	0
	2
	1
	3
	3
	2
	1
	0
	0
	3
	1
	3
	3
	3
	0
	0
	0
	Note that we came up with this design as a set of simple, systematic steps.
	There are more imaginative ways to approach this problem but this one will always work.

	Designing Cruise Control Software:
	Inputs
	1
	Switch system on
	2
	Switch system off
	3
	Lock current speed
	4
	Suspend control
	5
	Resume control

	States
	1
	System off
	2
	System on, no speed stored
	3
	System has speed stored but is not engaged
	4
	System has speed and is engaged
	Next State

	NS
	1
	2
	3
	4
	5
	1
	2
	1
	1
	1
	1
	2
	2
	1
	3/4?
	2
	2
	3
	3
	1
	3/4?
	3
	4
	4
	1
	4
	3
	4
	Note: Actual speed control is a separate (simulated) analog control system.
	An alternate design might do more error detection.

	Networks of Finite State Machines
	Nobody can design a real computer system as a single finite state machine!
	The state table would be far too large.
	The secret to designing both hardware and software is modularisation.
	Modularisation means designing something as a set of components, each of which can be designed wi...
	We can build networks of finite state machines in which:
	• the output of one machine is the input to another,
	• inputs are “split” and sent to more than one machine.
	• outputs from several machines are combined to be considered as a single output.

	Machines connected in “series”.
	In this example, the inputs and outputs are pairs of elements.
	The output alphabet of machine ONE must be the same as the input alphabet of machine TWO.
	We assume that the machine clocks are synchronised. Two machines are synchronised if they always ...
	The maximum number of network states is the product of the number of states of the two machines. ...

	Other ways to build networks
	An input to the network (or the output of one of the machines can be “split”, i.e. go to several ...
	Several machines may be combined (by putting a box around them as in the following example

	Why do we want Networks?
	Most real finite state machines many states to enumerate.
	Even with patience, the complexity would lead to errors.
	We need to “divide and conquer” the complexity.
	What we study now with FSMs, we will do later with programs.
	Example: A “ABA or BAB” machine

	Digital Computers are Finite State Machines
	All digital computers have been designed to behave as if they were finite state machines.
	They are built from a finite number of components; each component has a finite number of stable s...
	When reality shows through, we call a technician!

	Three Important Characteristics of FSMs
	(1) “Almost right” has no real meaning.
	• “Almost right” assumes continuity.
	• With digital machines “almost” means “not”.

	(2) You can get things exactly right.
	• You cannot cut a string exactly in half.
	• You can get software exactly right.

	(3) Most of the mathematics that you have learned (e.g. arithmetic, calculus) must be applied wit...
	• Differentiation assumes continuity
	• We can only approximate continuity
	This makes some fundamental changes in the nature of engineering. The concept of tolerance must b...

	The “Combiner” Machine
	It is a one state machine. (combinatorial logic)
	Its tables are:
	1
	1
	1
	1
	1
	0
	1
	2
	*
	“*” indicates “don't care”, a most important concept. We don’t care because we can never have bot...
	We often write programs (design machines) in which certain cases do not arise.
	To avoid “overspecification”, we indicate that the output in those cases can be anything that the...

	Why are Modern Computers Digital?
	There was once competition between digital and analogue computers.
	Norbert Wiener and John von Neumann - had two conflicting visions.
	Wiener’s analogue computers were a model of the system under study.
	Behaved analogously - circuits had the same differential equations as the system modelled.
	Digital Computer - calculated approximate solutions to those equations.
	Digital Computer - in many ways harder to use
	• You have to figure out how to solve the equations.
	• You have to deal with a machine that is fundamentally different from the system of interest.

	John von Neumann won! Why?
	• greater reliability
	• accuracy that is limited only by the size (number of elements)

	The Finite State Machine Model
	The most common view of the finite state machine i looks like a black box with wires coming in to...
	The machine changes its state at discrete “points” in time. The clock determines when state chang...
	The next state and the output are determined by present state input.
	That is all that any digital machine does!
	It is a boring, and endless, cycle.

	How Can We Describe FSMs?
	If you want to describe a finite state system, here is the procedure that you should follow:
	(1) Enumerate the set of states of the machine.
	(2) Enumerate all of the possible input and output conditions. (input alphabet, output alphabet).
	(3) Describe two functions/relations.
	• The NS function/relation describes the next state for (s,i).
	• The OUT function/relation describes the output for (s,i).
	For small, simple machines, use a table.
	“In theory” you can always use a table, but in practice we will have to use more powerful (conven...
	Nonetheless, the state transition table underlies all of our methods of describing computers and ...

	An example: the “ABA” acceptor
	This is a description of a simple machine that will output “1” only if the most recent three inpu...
	(initial state = 1)

	1
	2
	1
	1
	1
	0
	0
	0
	2
	2
	3
	1
	2
	0
	0
	0
	3
	2
	1
	1
	3
	1
	0
	0
	The state set is {1, 2, 3}.
	The input set is {A, B, C}.
	The output set is {0, 1}.

	Another ABA Acceptor - an Example of Nondeterminism (initial state = 1)
	1
	{2,4}
	1
	1
	1
	0
	0
	0
	2
	{2,4}
	3
	1
	2
	0
	0
	0
	3
	{2,4}
	1
	1
	3
	1
	0
	0
	4
	{2,4}
	3
	1
	4
	0
	0
	0

	Summary
	(1) We need better ways of describing large tables.
	(2) Any computer can be viewed as a finite state machine - when the hardware is working properly
	(3) Theoretically, one can design computers by state enumeration.
	(4) This is a “fall back” approach.
	(5) Decomposition is the key to mastering complexity.
	(6) We want simple networks of simple machines.
	(7) Always reduce a large programming problem to a sequence of simple ones.
	(8) Picking the component machines is the critical step.
	(9) Understanding the concept of state is the “science” of programming.
	(10) Remember the true meaning of state: the state is all you need to know to predict the future ...

	Dealing With Larger Machines
	Make Assertions about classes or sets of states.
	Example: In all states with an even number of widgets,
	There is a well developed mathematical notation for talking about sets.
	You will be learning about this in your other courses.
	The next slide summarises common notation.

	Notation for sets
	{x,y,z} enumeration - the set containing x, y, z
	| such that
	{x | <condition>} The set of elements such that x satisfies the condition.
	A Õ B A is a subset of B (could be identical)
	A Ã B A is a subset of B and smaller than B. (A is a proper subset of B)
	A » B set of elements in either A or B
	A « B set of elements in both A and B
	A - B set of elements of A that are not in B
	- (B) set of elements in Universe not in B (the complement of B)
	X Œ A X is an element of A
	{} an empty set
	Only combine sets from the same Universe.
	Even empty sets must have an associated Universe.

	Evaluating Predicate Expressions
	If P and Q are predicate expressions,
	(1) (a) ("xk,P) is true if P is true for all values of xk in our Universe. Otherwise, it is false.
	(2) (b) ($xk,P) is true if P is true if there is a value of xk in our Universe for which P is tru...
	(3) (c) (P)Ÿ(Q) is true if both P and Q are true. Otherwise, it is false.
	(4) (d) (P)⁄(Q) is true if either P or Q are true. Otherwise, it is false.
	(5) (e) Ø(P) is true if P is false. Otherwise, it is false.
	(6) (f) (P)ﬁ(Q) is true if either P is false or Q is true. Otherwise, it is false.

	Using tables to define functions.
	The functions that describe software are defined “piecewise - different definitions under differe...
	In this circumstance, one-dimensional expressions can be hard to read.
	Conditional expressions with many cases become complex.
	We can use a table to make things easier to read.
	The columns headings are predicate expressions.
	The row headings are the names of variables.
	The column headings should be mutually exclusive.
	The table entries are terms.
	w < 0
	w = 0
	w > 0
	x=
	x + w + q
	x + 2 - q
	x - w
	y=
	y + 2
	x + y
	x + y + 2
	z=
	z - w
	z
	z + w

	Example of a Table Defining a Relation
	($i, ((1 £ i £ n) Ÿ (‘A[i] = ‘x))
	Ø($i, ((1 £ i £ n) Ÿ (‘A[i] = ‘x))
	j’ |
	‘A[j] = ‘x
	true
	present’=
	true
	false
	
	A is a real Array
	x is a real variable
	i is an integer variable
	j is an integer variable
	present, a boolean variable, can have values “true”, and “false”.
	We will discuss these tables more carefully later.

	Summary of Mathematical Terms
	• A relation is a set of pairs (2-tuples).
	• The set of values that appear as the first element of a pair is called the domain of that relat...
	• The set of values that appear as the second element of a pair is called the relation’s range.
	• A function is a relation such that for any given element, x, in its domain, there is only one p...
	• If (a,b) is in the function F, “F(a)” means b, often called “the value of F at a”.
	• Domains and ranges may include tuples. It may make sense to write “F((a,b))”, “F((a,b,c))”, and...
	• Functions whose domain is smaller than the universe are called partial functions
	• Many of the functions that arise in software development will be partial functions.
	• A predicate is a function whose range contains no members other than true and false.
	• For any set, X, the characteristic predicate of X is a predicate whose domain is the universe f...

	Predicative Descriptions of Finite State Machines
	Real computers have so many states that it is impractical to describe machines by enumerating the...
	Decomposing a machine into a network it is not always sufficient. Even simple, regular machines c...
	We have to find another way to describe the Next State and Output functions.
	Because predicates can characterise sets, and hence functions, we can use predicate expressions t...
	These same mathematical concepts will be used to describe programs.

	The ABA machine revisited.
	Initial State = 1
	If we don’t want to enumerate all the states and inputs we can describe the function by its chara...
	The following characterises the NS function:
	((NS = 1) Ÿ
	((((s = 1) ⁄ (s = 2))Ÿ((i = B) ⁄ (i = C)))
	 ⁄ ((s = 3) Ÿ (i = C)))) ⁄
	((NS = 2) Ÿ (s = 3) Ÿ (i = B)) ⁄
	((NS = 3) Ÿ (i = A))
	The following characterises the OUT function:
	((OUT = 1) Ÿ (s = 2) Ÿ (i = A)) ⁄
	((OUT = 0) Ÿ (Ø((s = 2) Ÿ (i = A))))
	For this example, the table is simpler than the characteristic predicate.

	Predicative Descriptions
	When do they help?
	• Help if and only if there is regularity that can be exploited.
	• Help most when there are many states
	• Can also be (helpfully) written in tabular form.

	Most real programs meet these constraints.
	This is why your logic course is so important.
	Logic will allow you to describe complex systems precisely.
	There are tools to help you check your descriptions and that will confirm that they have or do no...

	A Predicative Description of a Machine that Counts Up and Down Between 0 and 100
	((s < 100) Ÿ(IN = 1) Ÿ (NS = s + 1)) ⁄
	((s= 100) Ÿ (IN = 1) Ÿ (NS = 100)) ⁄
	((s > 0) Ÿ (IN = 2) Ÿ (NS = s -1)) ⁄
	((s = 0) Ÿ (IN = 2) Ÿ (NS= 0))
	((s < 100) Ÿ(IN = 1) Ÿ (OUT = s + 1)) ⁄
	((s= 100) Ÿ (IN = 1) Ÿ (OUT = 100)) ⁄
	((s > 0) Ÿ (IN = 2) Ÿ (OUT = s -1)) ⁄
	((s = 0) Ÿ (IN = 2) Ÿ (OUT= 0))
	Descriptions of this sort are better than enumerative descriptions.
	Descriptions of this sort are still hard to read and check.
	Can we use tables to make things better?

	Tabular Description of the Counter
	Normal Function Table Describing NS(s,IN)
	NS =
	IN = 1
	IN = 2
	s= 0
	s + 1
	0
	0 < s < 100
	s + 1
	s - 1
	s = 100
	100
	s - 1
	Normal Function Table Describing OUT(s,IN)
	OUT=
	IN = 1
	IN = 2
	s= 0
	s + 1
	0
	0 < s < 100
	s + 1
	s - 1
	s = 100
	100
	s - 1
	Note how the use of predicates and tabular notation helps in getting descriptions that are both p...

	Themes in these lecture:
	This should be no-less-true for software.
	But, it is not “the usual way”.
	We have to work to keep them that way.
	Divide work into small “modules”.
	Encapsulate modules by specifications.
	Keep the specification simpler than the program.

	The ABA or BAB Acceptor (initial state = 1)
	This is a description of a machine that will output “1” if and only if the most recent three inpu...
	1
	2
	3
	1
	1
	0
	0
	0
	2
	2
	4
	1
	2
	0
	0
	0
	3
	5
	3
	1
	3
	0
	0
	0
	4
	5
	3
	1
	4
	1
	0
	0
	5
	2
	4
	1
	5
	0
	2
	0
	The state set is {1, 2, 3, 4,5}.
	The input set is {A, B, C}.
	The output set is {0, 1, 2}.

	Example: Programming a Chinese Abacus
	First attempt: A procedure in the form of rules:
	• If there are two lower beads up and you are adding two, move two beads up.
	• If there are 4 lower beads up and you are adding 3, move 1 of the upper beads up and then 2 of ...
	• If both upper beads are up, move both upper beads down and add one to the column to the left.
	•

	This will take a lot of rules.
	There may be ambiguities.
	There may be missing cases.
	We can instruct the operator by a table so that we can be sure we covered everything.
	Being systematic is the key to good programming.

	An Instruction Table for the Abacus
	What to do with the beads for this column || What to add to left column
	NS
	1
	2
	3
	4
	5
	6
	7
	8
	9
	OUT
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
	2
	3
	4
	5
	6
	8
	9
	10
	11
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	2
	3
	4
	5
	6
	8
	9
	10
	11
	12
	2
	0
	0
	0
	0
	0
	0
	0
	0
	0
	3
	4
	5
	6
	8
	9
	10
	11
	12
	14
	3
	0
	0
	0
	0
	0
	0
	0
	0
	0
	4
	5
	6
	8
	9
	10
	11
	12
	14
	15
	4
	0
	0
	0
	0
	0
	0
	0
	0
	0
	5
	6
	8
	9
	10
	11
	12
	14
	15
	16
	5
	0
	0
	0
	0
	0
	0
	0
	0
	0
	6
	8
	9
	10
	11
	12
	14
	15
	16
	17
	6
	0
	0
	0
	0
	0
	0
	0
	0
	0
	7
	8
	9
	10
	11
	12
	14
	15
	16
	17
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	8
	9
	10
	11
	12
	14
	15
	16
	17
	18
	8
	0
	0
	0
	0
	0
	0
	0
	0
	0
	9
	10
	11
	12
	14
	15
	16
	17
	18
	8
	9
	0
	0
	0
	0
	0
	0
	0
	0
	1
	10
	11
	12
	14
	15
	16
	17
	18
	8
	9
	10
	0
	0
	0
	0
	0
	0
	0
	1
	1
	11
	12
	14
	15
	16
	17
	18
	8
	9
	10
	11
	0
	0
	0
	0
	0
	0
	1
	1
	1
	12
	14
	15
	16
	17
	18
	8
	9
	10
	11
	12
	0
	0
	0
	0
	0
	1
	1
	1
	1
	13
	14
	15
	16
	17
	18
	8
	9
	10
	11
	13
	0
	0
	0
	0
	0
	1
	1
	1
	1
	14
	15
	16
	17
	18
	8
	9
	10
	11
	12
	14
	0
	0
	0
	0
	1
	1
	1
	1
	1
	15
	16
	17
	18
	8
	9
	10
	11
	12
	14
	15
	0
	0
	0
	1
	1
	1
	1
	1
	1
	16
	17
	18
	8
	9
	10
	11
	12
	14
	15
	16
	0
	0
	1
	1
	1
	1
	1
	1
	1
	17
	18
	8
	9
	10
	11
	12
	14
	15
	16
	17
	0
	1
	1
	1
	1
	1
	1
	1
	1
	18
	8
	9
	10
	11
	12
	14
	15
	16
	17
	18
	1
	1
	1
	1
	1
	1
	1
	1
	1
	This “program” (or set of programs) turns the abacus into a new machine. It is a finite state mac...

	Assigning (arbitrary) Numbers to States.
	We must make sure we get them all!
	State Assignments

	State
	Upper
	Lower
	value
	1
	0
	0
	0
	2
	0
	1
	1
	3
	0
	2
	2
	4
	0
	3
	3
	5
	0
	4
	4
	6
	0
	5
	5
	7
	1
	0
	5
	8
	1
	1
	6
	9
	1
	2
	7
	10
	1
	3
	8
	11
	1
	4
	9
	12
	1
	5
	10
	13
	2
	0
	10
	14
	2
	1
	11
	15
	2
	2
	12
	16
	2
	3
	13
	17
	2
	4
	14
	18
	2
	5
	15

	Another Instruction Table for the Abacus
	What to do with the beads for this column || What to add to left column
	NS
	1
	2
	3
	4
	5
	6
	7
	8
	9
	OUT
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
	2
	3
	4
	5
	7
	8
	9
	10
	11
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	2
	3
	4
	5
	7
	8
	9
	10
	11
	13
	2
	0
	0
	0
	0
	0
	0
	0
	0
	0
	3
	4
	5
	7
	8
	9
	10
	11
	13
	14
	3
	0
	0
	0
	0
	0
	0
	0
	0
	0
	4
	5
	7
	8
	9
	10
	11
	13
	14
	15
	4
	0
	0
	0
	0
	0
	0
	0
	0
	0
	5
	7
	8
	9
	10
	11
	13
	14
	15
	16
	5
	0
	0
	0
	0
	0
	0
	0
	0
	0
	6
	8
	9
	10
	11
	13
	14
	15
	16
	17
	6
	0
	0
	0
	0
	0
	0
	0
	0
	0
	7
	8
	9
	10
	11
	13
	14
	15
	16
	17
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	8
	9
	10
	11
	13
	14
	15
	16
	17
	18
	8
	0
	0
	0
	0
	0
	0
	0
	0
	0
	9
	10
	11
	13
	14
	15
	16
	17
	18
	8
	9
	0
	0
	0
	0
	0
	0
	0
	0
	1
	10
	11
	13
	14
	15
	16
	17
	18
	8
	9
	10
	0
	0
	0
	0
	0
	0
	0
	1
	1
	11
	13
	14
	15
	16
	17
	18
	8
	9
	10
	11
	0
	0
	0
	0
	0
	0
	1
	1
	1
	12
	14
	15
	16
	17
	18
	8
	9
	10
	11
	12
	0
	0
	0
	0
	0
	1
	1
	1
	1
	13
	14
	15
	16
	17
	18
	8
	9
	10
	11
	13
	0
	0
	0
	0
	0
	1
	1
	1
	1
	14
	15
	16
	17
	18
	8
	9
	10
	11
	13
	14
	0
	0
	0
	0
	1
	1
	1
	1
	1
	15
	16
	17
	18
	8
	9
	10
	11
	13
	14
	15
	0
	0
	0
	1
	1
	1
	1
	1
	1
	16
	17
	18
	8
	9
	10
	11
	13
	14
	15
	16
	0
	0
	1
	1
	1
	1
	1
	1
	1
	17
	18
	8
	9
	10
	11
	13
	14
	15
	16
	17
	0
	1
	1
	1
	1
	1
	1
	1
	1
	18
	8
	9
	10
	11
	13
	14
	15
	16
	17
	18
	1
	1
	1
	1
	1
	1
	1
	1
	1
	This is another “program” in which we move the five lower beads down and replace them with an upp...

	Another Instruction Table for the Abacus
	What to do with the beads for this column || What to add to left column
	NS
	1
	2
	3
	4
	5
	6
	7
	8
	9
	OUT
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
	2
	3
	4
	5
	7
	8
	9
	10
	11
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	2
	3
	4
	5
	7
	8
	9
	10
	11
	1
	2
	0
	0
	0
	0
	0
	0
	0
	0
	1
	3
	4
	5
	7
	8
	9
	10
	11
	1
	2
	3
	0
	0
	0
	0
	0
	0
	0
	1
	1
	4
	5
	7
	8
	9
	10
	11
	1
	2
	3
	4
	0
	0
	0
	0
	0
	0
	1
	1
	1
	5
	7
	8
	9
	10
	11
	1
	2
	3
	4
	5
	0
	0
	0
	0
	0
	1
	1
	1
	1
	6
	8
	9
	10
	11
	1
	2
	3
	4
	5
	6
	0
	0
	0
	0
	1
	1
	1
	1
	1
	7
	8
	9
	10
	11
	1
	2
	3
	4
	5
	7
	0
	0
	0
	0
	1
	1
	1
	1
	1
	8
	9
	10
	11
	1
	2
	3
	4
	5
	7
	8
	0
	0
	0
	1
	1
	1
	1
	1
	1
	9
	10
	11
	1
	2
	3
	4
	5
	7
	8
	9
	0
	0
	1
	1
	1
	1
	1
	1
	1
	10
	11
	1
	2
	3
	4
	5
	7
	8
	9
	10
	0
	1
	1
	1
	1
	1
	1
	1
	1
	11
	1
	2
	3
	4
	5
	7
	8
	9
	10
	11
	1
	1
	1
	1
	1
	1
	1
	1
	1
	12
	2
	3
	4
	5
	7
	8
	9
	10
	11
	12
	1
	1
	1
	1
	1
	1
	1
	1
	1
	13
	2
	3
	4
	5
	7
	8
	9
	10
	11
	13
	1
	1
	1
	1
	1
	1
	1
	1
	1
	14
	3
	4
	5
	7
	8
	9
	10
	11
	13
	14
	1
	1
	1
	1
	1
	1
	1
	1
	1
	15
	4
	5
	7
	8
	9
	10
	11
	13
	14
	15
	1
	1
	1
	1
	1
	1
	1
	1
	1
	16
	5
	7
	8
	9
	10
	11
	13
	14
	15
	16
	1
	1
	1
	1
	1
	1
	1
	1
	1
	17
	5
	8
	9
	10
	11
	13
	14
	15
	16
	17
	1
	1
	1
	1
	1
	1
	1
	1
	1
	18
	8
	9
	10
	11
	13
	14
	15
	16
	17
	18
	1
	1
	1
	1
	1
	1
	1
	1
	1
	This version does a “carry” as soon as possible. It doesn’t really use all of its states and it h...
	Note that the highest number in rows 1 - 11 is 11. The first 11 rows describe a “terminal submach...

	Why are we discussing this?
	We don’t really care about the abacus.
	Tables like this are our way of being systematic, being sure we cover all our cases, being precis...
	Designing finite state machines like this is a simple form of programming.
	Some of the best programs are table driven.
	Even if we don’t use the table directly, making tables like this is a systematic way of covering ...
	Of course, we will have to extend this technique to allow us to deal with more cases.
	This is the “fall back” technique. We use it when nothing else works. It is the basis for all oth...

