
 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
1 absint1.slides

What's Special About “embedded” Systems?

A. Not just a question of size or real-time demands

B. Definition--an embedded computer system is
considered a module in some larger system

C. Some distinguishing characteristics of embedded
computer systems

1. Designer not free to define interface.

2. Interface constraints may be strict and arbitrary,
but we can't ignore them.

3. Several similar interfaces may be involved.

4. Interface will change during development

5. Cost of changing computer system often not
considered seriously when changes in total
system are made.

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
2 absint1.slides

A Contractual Dilemma (internal or external)

1. Contract must constrain contractor by providing
testable specifications.

2. For many reasons, final interface must be
considered unknown.

3. System for “wrong” interface will be hard to
change.

4. Lack of competition makes late changes
unreasonably expensive.

These dilemmas arise in any multi-person project -
they are simply exacerbated when contracts are
involved.

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
3 absint1.slides

Preponderance of Embedded Systems

This is often used by U.S. DoD as an explanation for
the high cost of its software.

• a partial explanation for the high cost of DoD
software

• Even more of a problem in communication systems.

1. Real-time constraints, limited memory, etc. are
not unique to DoD

2. Incompetence is not confined to DoD

3. Poor tools can be found everywhere

4. Language proliferation can be found elsewhere

5. Rigidity and complexity of interfaces is a
characteristic of several application areas but
Communications and DoD are extreme
examples.

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
4 absint1.slides

Examples of Embedded Systems
A. Mailing List System

Constraints: address format,

use of titles,

postal code scheme,

location of key information

B. Message Processing Systems

Constraints: Message format,

priority scheme,

addressing scheme

C. Computers in weapons systems

(e.g., TC-2 computer in the A-7)

Constraints: devices,

navigation data,

weapon characteristics

D. Telephone Switching Systems
Constraints: Other company’s switches

Own older switches
international standards
telephone number rules

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
5 absint1.slides

What is an Interface?

Before we can talk about design and specification of
interfaces, we must define that term.

More than just syntax or format.

Theinterfacebetweentwo programsis characterised
by the setof explicit andimplicit assumptionsthey
make about each other.

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
6 absint1.slides

Examples of implicit assumptions and their
effects on application programs

Mailing List Software
- all digit zip code
- six digit zip code
- zip code at end of address

A-7
- device data formats
- symbols on HUD
- data entry protocol

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
7 absint1.slides

Applying “Information Hiding” to the “Embedded
System” Problem

The external interface is what is likely to change.

Use an “abstract interface” to “hide” the actual
interface.

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
8 absint1.slides

Abstract Interfaces

What do we mean by abstract?
1. Do not mean vague, theoretical or highly

mathematical; abstract means - expressing a
general property.

2. Abstract implies a many-to-one mapping.

3. The abstraction represents many things equally
well.

4. The abstraction models some aspects of the real
things, but not all.

5. Eliminating detail is the approach: The interesting
issue iswhich details should be eliminated.

6. Examples of abstractions

6.1 Circuit diagrams

6.2 Graphs

6.3 Algorithms

6.4 Data types

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
9 absint1.slides

Abstract Interfaces

Why are abstractions useful?

1. If all properties of the abstract system correspond
to properties of the real system, we can learn
about the real system by studying the abstraction.

2. Abstraction is simpler (in principle).

3. Results about abstraction may be “reused”.

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
10 absint1.slides

Abstract Interfaces

What is an abstract interface?

1. One interface that represents many possible
actual interfaces.

2. An interface that models some properties of
actual interface but not all.

3. A subset of the set of assumptions in the actual
interface.

The assumptions must be true.A lie is not an
abstraction.

All things true of the abstract interface must be true
of actual interface.

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
11 absint1.slides

How can interface hiding modules be used in embedded systems?

A. Define the abstract real-world interface.

B. Procure applications programs based on abstract interface,
preventing exploitation of facts that happen to be true of today's
actual interface.

The interface programs implement one instance of the many-to-one
mapping between the actual real-world interface and the abstract
real-world interface.

Real World

interface programs

applications programs

actual real-world interface

abstract interface module

abstract real-world interface

Cont’d.

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
12 absint1.slides

How can interface hiding modules be used in
embedded systems?

C. When actual interface is fixed, build interface
programs.

D. “Real-World” changes that affect actual interface
SHOULD only affect the interface programs.

E. There should be no unnecessary effort in
translation from an external format to an internal
one.

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
13 absint1.slides

Simple Example--A Date Interface

Possible formats in actual interfaces:

February 10, 1941 (month day-in-month, year),

10 February 1941 (day-in-month month year),

10 February 41 (day-in-month month last-two-digits-of year)

10.2.1941 (day-in-month.integer-encoded-month.year),

2/10/1941 (integer-encoded month/day-in-month/year),

41.2.10 (last-two-digits-of-year.integer-encoded-
month.day-in-month),

41 February 10 (last-two-digits-of-year month day-in-month)

41,41 (day-in-year, last-two-digits-of-year).

41,41 (last-two-digits-of-year, day-in year).

15015 (days since the first day of 1900)

 Abstract Interface
get_year,get_month,get_day,-get-days-since-1900,
get-day-in-year, get-years-since-1900,
get-month-as-integer, etc.

Note assumptions about range of years.

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
14 absint1.slides

How to Design an Abstract Interface

A. Prepare a list of assumptions about properties of all the
possible real-world interfaces to be encountered--
review it.

B. Express these assumptions by defining a set of access
programs representing possible system inputs and
outputs and by stating relations between these access
programs. This is the module specification.

C. Perform consistency checks
1. Verify that any property of the access program set

is implied by the assumptions.

2. Verify that all assumptions are in the interface
specification.

3. It should be possible to write bulk of system in
terms of these access programs; if not, return to A.

D. Contracting:
Contractor is required to write bulk of system in terms
of the access programs defined in B, and programs
must be correct for any implementation of those
access programs that satisfies the specification.

A separate contract is let for the Interface Modules.

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
15 absint1.slides

Illustration of this Procedure for the Address Holder

1. Initial assumptions

The following items of information will be contained
in addresses and can be identified by analysis of the
input data; this information is the only information
that will be relevant for our computer programs:

Last name

First name

Organisation

Street address

City, state and zip code

(single line with a comma between city
and state)

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
16 absint1.slides

Illustration of this Procedure for the Address Holder

2. Objections

There might be a title, e.g. Professor, King.

The postal code might be on a separate line.

There might be a P.O. Box.

It might be the name of a company,

. . . .

3. Refined assumptions - based on objections.

Many additional access programs are needed.

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
17 absint1.slides

Refining/extending the interface for a subset of
the interfaces

A. Some useful applications programs may not be
generally applicable.

B. Confinement of the specialised program.

C. Specialisation (refinement) by adding access
programs not generally implementable.

D. Specialisation (refinement) by stating additional
properties of access programs.

E. Deviant actual interfaces.

F. The family tree again.

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
18 absint1.slides

When won't it work?

A. Success depends on our ability to predict change
(oracle assumption).

B. Success depends on existence of commonality
between actual interfaces (interface programs
smaller than applications programs).

C. The Big “Big-Box” Assumption.

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
19 absint1.slides

Summary

A. An interface is equivalent to a set of assumptions.

B. The abstract interface is a precise, formally
specified interface.

C. The abstract interface is a model of all “expected”
actual interfaces. Explicit, systematic design is
needed. Review is essential.

D. Contractor is more tightly constrained than in
conventional procedure--his program is not
allowed to make assumptions that limit
applicability.

E. Actual interface is met by writing additional
programs--not by modifying programs that were
written based on the abstract interface definitions.

 McMaster University

12/5/97

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
20 absint1.slides

Abstract interface design as an application of
fundamental principles

A. Being explicit about assumptions and design
decisions.

B. Encapsulation of likely change.

C. Abstract interface modules can solve the
embedded computer system problem by hiding
the embedding from the computer.

D. External interface modules are just a special
case--use same method for other information-
hiding modules.

