= McMaster University =

What's Special About “embedded” Systems?

Not just a question of size or real-time demands

Definition--an embedded computer system
considered a module in some larger system

Some distinguishing characteristics of embedded

computer systems

1. Designer not free to define interface.

2. Interface constraints may be strict and arbitrary,

but we can't ignore them.
Several similar interfaces may be involved.
4. Interface will change during development

Cost of changing computer system often
considered seriously when changes in tc
system are made.

not
tal

1

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

absintl.slides 12/5/97

= McMaster University =

These dilemmas arise in any multi-person proje
they are simply exacerbated when contracts
involved.

A Contractual Dilemma (internal or external)

Contract must constrain contractor by provid
testable specifications.

For many reasons, final interface must
considered unknown.

System for “wrong” interface will be hard t
change.

Lack of competition makes late chang

unreasonably expensive.

ng

be

o

€S

ct -
are

2

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

absintl.slides 12/5/97

= McMaster University =

This is often used by U.S. DoD as an explanation
the high cost of its software.

«a partial explanation for the high cost of Dag

« Even more of a problem in communication systen

N

> W

Preponderance of Embedded Systems

software

for

D

Real-time constraints, limited memory, etc. are

not unique to DoD

Incompetence is not confined to DoD
Poor tools can be found everywhere
Language proliferation can be found elsewhe
Rigidity and complexity of interfaces is
characteristic of several application areas

Communications and DoD are
examples.

extrer

a
but
ne

3

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
absintl.slides 12/5/97

= McMaster University =

Examples of Embedded Systems

A. Mailing List System

Constraints: address format,
use of titles,
postal code scheme,
location of key information

B. Message Processing Systems

Constraints: Message format,
priority scheme,
addressing scheme

C. Computers in weapons systems
(e.g., TC-2 computer in the A-7)
Constraints: devices,
navigation data,
weapon characteristics

D. Telephone Switching Systems

Constraints: Other company'’s switches
Own older switches
international standards
telephone number rules

4

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
absintl.slides

12/5/97

= McMaster University =

What is an Interface?

Before we can talk about design and specificatio
interfaces, we must define that term.

More than just syntax or format.

Theinterfacebetweerntwo programgs characterise
by the setof explicit andimplicit assumptionshey
make about each other

n of

QO

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
5 absintl.slides 12/5/97

= McMaster University =

Examples of implicit assumptions and their
effects on application programs

Mailing List Software
- all digit zip code
- six digit zip code
- zip code at end of address

- device data formats
- symbols on HUD
- data entry protocol

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
6 absintl.slides 12/5/97

= McMaster University =

Applying “Information Hiding” to the “Embedded
System” Problem
The external interface is what is likely to change
Use an “abstract interface” to “hide” the acty
interface.
Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
7 absintl.slides 12/5/97

al

= McMaster University =

Abstract Interfaces

What do we mean by abstract?

1.

Do not mean vague, theoretical or hig

mathematical; abstract means - expressing a

general property.
Abstract implies a many-to-one mapping.

The abstraction represents many things eqt
well.

Jally

The abstraction models some aspects of the real

things, but not all.

Eliminating detail is the approach: The interest
issue iswvhich details should be eliminated.

Examples of abstractions
6.1 Circuit diagrams

6.2 Graphs

6.3 Algorithms

6.4 Data types

8

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
absintl.slides 12/5/97

ng

= McMaster University =

Abstract Interfaces

Why are abstractions useful?

1. If all properties of the abstract system corresp
to properties of the real system, we can le
about the real system by studying the abstract

2. Abstraction is simpler (in principle).

3. Results about abstraction may be “reused”.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
9 absintl.slides 12/5/97

ond
arn
[ion.

= McMaster University =

Abstract Interfaces

What is an abstract inteide?

actual interfaces.

actual interface but not all.

interface.

abstraction.

of actual interface.

The assumptions must be trué. lie is not an

1. One interface that represents many possible

2. An interface that models some properties of

3. A subset of the set of assumptions in the actual

All things true of the abstract interface must be true

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
10 absintl.slides

12/5/97

= McMaster University =

How can interface hiding modules be used in embedded systems

Define the abstract real-world interface.
Procure applications programs based on abstract interf

ace,

preventing exploitation of facts that happen to be true of today's

actual interface.

Real World actual real-world interface

interface programs abstract interface module

applications programs | abstract real-world interface

The interface programs implement one instance of the many-to
mapping between the actual real-world interface and the abs
real-world interface.

Cont'd. —»

rone
tract

11

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

absintl.slides 12/5/97

= McMaster University =

How can interface hiding modules be used in

. When actual interface is fixed, build interfa

embedded systems?

programs.

“Real-World” changes that affect actual interfa
SHOULD only affect the interface programs.

There should be no unnecessary effort
translation from an external format to an interr
one.

ce

ce

in
nal

12

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

absintl.slides 12/5/97

= McMaster University = = McMaster University =

Simple Example--A Date Interface How to Design an Abstract Interface
Possible formats in actual interfaces: A. Prepare a list of assumptions about properties of all the
possible real-world interfaces to be encountered--
February 10, 1941 (month day-in-month, year), review it.
10 February 1941 - (day-in-month month year), B. Express these assumptions by defining a set of access
10 February 41 (day-in-month month last-two-digits-of year) programs representing possible system inputs and
_ _ outputs and by stating relations between these access
10.2.1941 (day-in-month.integer-encoded-month.year), programs. This is the module specification.
2/10/1941 integer-encoded month/day-in-month/year), .
(integ Y year) C. Perform consistency checks
41.2.10 ('aSthtVéo'digitS'Of'ﬁeaf-integef'e“COded' 1. Verify that any property of the access program set
month.day-in-month), is implied by the assumptions.
41 February 10 (last-two-digits-of-year month day-in-month) 2. Verify that all assumptions are in the interface
41,41 (day-in-year, last-two-digits-of-year). specification.
. : 3. It should be possible to write bulk of system in
41,4 (last-two-digits-of-year, day-in year). terms of these access programs; if not, return to A.
15015 (days since the first day of 1900)

D. Contracting:
Abstract Interface Contractor is required to write bulk of system in terms
of the access programs defined in B, and programs

et_year,get_month,get_day,-get-days-since-1900, . ;
Jeyealge ge a9 A must be correct for any implementation of those

get-day-in-year, get-years-since-1900,

get-month-as-integer, etc. access programs that satisfies the specification.
Note assumptions about range of years. A separate contract is let for the Interface Modules.
Communications Research Laboratory Communications Research Laboratory
Software Engineering Research Group Software Engineering Research Group
“connecting theory with practice” “connecting theory with practice”

13 absintl.slides 12/5/97 14 absintl.slides 12/5/97

= McMaster University =

[llustration of this Procedure for the Address Holder

1. Initial assumptions

The following items of information will be containe
in addresses and can be identified by analysis o
input data; this information is the only informati
that will be relevant for our computer programs:

Last name

First name
Organisation

Street address

City, state and zip code

(single line with a comma between c
and state)

2d
f the
DN

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

15 absintl.slides 12/5/97

= McMaster University =

[llustration of this Procedure for the Address Holder

2. Objections

There might be a title, e.g. Professor, King.
The postal code might be on a separate line.
There might be a P.O. Box.

It might be the name of a company,

3. Refined assumptions - based on objections.

Many additional access programs are needed

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

16 absintl.slides 12/5/97

= McMaster University = = McMaster University =

Refining/extending the interface for a subset of
the interfaces

When won't it work?

A. Some useful applications programs may not be A. Success depends on our ability to predict change
generally applicable. (oracle assumption).
B. Confinement of the specialised program. B. Success depends on existence of commonality

between actual interfaces (interface programs

o . : smaller than applications programs).
C. Specialisation (refinement) by adding access PP Prog)

programs not generally implementable.
C. The Big “Big-Box” Assumption.

D. Specialisation (refinement) by stating additional
properties of access programs.

E. Deviant actual interfaces.

F. The family tree again.

Communications Research Laboratory Communications Research Laboratory
Software Engineering Research Group Software Engineering Research Group
“connecting theory with practice” “connecting theory with practice”

17 absintl.slides 12/5/97 18 absintl.slides 12/5/97

= McMaster University =

. The abstract interface is a model of all “expect

. Contractor is more tightly constrained than

Summary

An interface is equivalent to a set of assumptic

specified interface.

. The abstract interface is a precise, formally

ed”

actual interfaces. Explicit, systematic design is

needed. Review is essential.

conventional procedure--his program is
allowed to make assumptions
applicability.

Actual interface is met by writing addition

in

not
that limit

al

programs--not by modifying programs that were

written based on the abstract interface definitions.

19

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

absintl.slides 12/5/97

NS.

= McMaster University =

. Abstract

Abstract interface design as an application of
fundamental principles

Being explicit about assumptions and design

decisions.
Encapsulation of likely change.

interface modules can solve

the

embedded computer system problem by hiding

the embedding from the computer.

External interface modules are just a spe
case--use same method for other informati
hiding modules.

cial
on-

20

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

absintl.slides 12/5/97

