
 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

1 agingclass.slides

Software Aging

David Lorge Parnas

McMaster University, Hamilton, Ontario, Canada L8S 4K1

Programs, like people, get old. We can’t prevent aging, but we
can understand its causes, take steps to limits its effects, tempo-
rarily reverse some of the damage it has caused, and prepare for
the day when the software is no longer viable. A sign that the
Software Engineering profession has matured will be that we
lose our preoccupation with the next release and focus on the
long term health of our products. Researchers and practitioners
must change their perception of the problems of software devel-
opment. Only then will Software Engineering deserve to be
called Engineering.

Structural Aging

Buildings, like people, get old. We can't prevent aging, but we
can understand its causes, take steps to limit its effects, temporar-
ily reverse some of the damage it has caused, and prepare for the
day when the building is no longer viable. A sign that the Struc-
tural Engineering profession has matured will be that we lose our
preoccupation with the next project and focus on the long term
health of buildings. Researchers and practitioners must change
their perception of the problems of architecture. Only then will
Structural Engineering deserve to be called Engineering.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

2 agingclass.slides

Software Aging is Nonsense!

• Software is a mathematical product.

• Mathematics doesn’t decay with time.

• If a theorem was correct 200 years ago, it will be
correct tomorrow.

• If a program is correct today, it will be correct 100
years from now.

• If it is wrong 100 years from now, it must have been
wrong when it was written.

• It makes no sense to talk about software aging.

True, but not reall y rele vant.

SoftwareDoesGetOld andit costsmorein old age
than it did at birth.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

3 agingclass.slides

 Software Pr oducts Do Exhibit Aging!

It may not be aging but it sure feels like aging.
• Old software has begun to cripple its once-proud owners.

• Old products are considered a burdensome legacy

• Obesity often accompanies aging.

• Increasing effort required to support legacy software.

• Like human aging, software aging is inevitable, but

• there are things that we can do to slow down the process.

• Sometimes, we can reverse its effects (temporarily).

Software aging is not a new phenomenon.

Software aging is gaining in significance.

Owners of new software products often look at
aging software with disdain.

“The new products won’t age. They are written in
Object C-dula ++” and using xx.oriented
techniques.”

Some of those old products were once proud youth,
and written using the latest fad.

There is no fountain of youth.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

4 agingclass.slides

What Causes Software Aging?

Two basic types of software aging:

• Failure to keep up with changing environment,

• Tissue damage resulting from maintenance.

A “one-two punch”!

Damned if you do; damned if you don’t.

Both lead to a decline in the value of a software
product.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

5 agingclass.slides

Causes of Software Aging

Lack of movement

• Our expectations have changed

• We are no longer willing to use the clumsy software
interfaces of yesterday.

• We demand interactive access; don’t even think about
batch systems.

• Old software would still do its job if used, but nobody
would use it.

• Old software can be modified and extended to meet
modern expectations.

• Old software must compete with young products

When changes arenot made, it seems as if the
software has aged!

A product that was considered great a few years ago,
is not useful although it hasn’t changed.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

6 agingclass.slides

More Causes of Software Aging

Ignorant surgery

Designers of software had simple concept in mind
when writing the program.

Understanding that concept allows one to find
sections to be altered.

Understanding that concept means understanding
the interfaces.

Changes made without understanding design
concept almost always invalidate it.

Changed code is inconsistent with the original
concept.

After changes, one must know both the original
design concept, and the exceptions.

After such changes, the original designers no longer
understand the product.

Nobody understands the modified product.

continued.....

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

7 agingclass.slides

More Causes of Software Aging

Ignorant surgery (continued)

When nobody understands the product,
• Changes take longer.

• Changes are more likely to introduce “bugs”.

The problem is exacerbated when maintainers do
not have time to update the documentation.

The documentation becomes increasingly inaccurate
thereby making future changes even more difficult.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

8 agingclass.slides

More causes of software a ging

Cancerous Growth

We live in a world that requires many versions of a
software product.

Many companies allow the product line to split, with
the second line inheriting the properties of the first.

This policy leads to explosive, difficult to constrain,
growth.

Changes must be made to many versions instead of
to one.

The cost of maintenance gets very high.

It is no longer possible to keep up with the market
on all the versions.

The diversity grows and is hard to stop.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

9 agingclass.slides

More Causes of Software Aging

Aging and Disappearing Programmers

Programmers move on to other projects.

Programmers get promoted to managers.

Programmers forget what they did and why they did
it.

Programmers change their “style”.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

10

More Causes of Software Aging

Bad Documentation
• Information not available.

• Information not correct.

• Information hard to find.

• Information must be verified.

• Information is imprecise, easily misinterpreted.

Documents are not kept “alive”.

The situation keeps getting worse.

Movement is visibly slower

• It takes time to find information

• It all has to be verified.

That is why you will find so much emphasis on
precise and clear documentation in this class and
others.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

11

Pseudo Software Aging

Kidney failur e
Oftenconfused with software aging!

Failure to release allocated memory.

Files require pruning.

Swap and file space are diminished.

Performance degrades.

Often a congenital design failure.

Can strike at any age.

May be the result of ignorant surgery

May be exacerbated by changing usage patterns.

Perceived as “leaking”.

More easily cured than aging!
• Dialysis: cleans up the file system and memory

• Kidney transplant: new allocation routines, garbage
routines

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

12

The costs of software a ging

Rapidly Rising Maintenance Costs

It’s harder to know where to make changes.

Changes are harder to make.

There are more errors.

Testing becomes more of a burden.

Documentation takes longer to update.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

13

The Costs of Software Aging

Inability to k eep up with others

Younger products have desired features.

Younger products can be adapted more quickly.

Younger products win more market share.

Obese products consume more resources

Older products starve to death because they cannot
catch new “prey” and they need more “food”.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

14

The Costs of Software Aging

Reduced performance

The size of the program grows.

More demands on the computer memory.

More delays caused by swapping.

Performance decreases because of poor
 (poorly understood) design.

Customers must upgrade their hardware to get
acceptable response.

Some customers switch to younger products to
obtain better performance.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

15

The Costs of Software Aging

Decreasing reliability

Errors are introduced.

Each error corrected may introduce more than one
error.

Improvements can make things worse.

Often a product must be abandoned.

Some products that we use daily have thousands of
known bugs.

Large groups are devoted to customer requested
repairs.

Nobody is shocked by such statements

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

16

Software Aging in the T elecom Industr y

Nowhere is software aging more evident than in
the telecom industry!

• There is a great demand for change

• There is a lot of competition

• Interoperability increases the demand for change

• Interoperability increases the competitive
pressure

• The need to move into markets fast has led to
cancerous growth

• Rapid change has led to obesity and bad
structure.

• Documentation is often postponed until slower
times.

• Rapid growth has led to “ignorant” surgery.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

17

Reducing the costs of Software Aging
Neo-Natal Phase

Outgrow “ran the first time” elation.
• It is not “right the first time” that matters.

• “Clean compile” means even less.

“Configuration Management” while vitally
important, is a losing battle with increasing entropy.
It’s not the solution.

Controlling software aging, requires good design,
not just good management.

Software geriatrics begins with neo-natal care!

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

18

Reducing the Costs of Software Aging
Neo-Natal Phase -Pre ventive Medicine

Design for success!
The only software that doesn’t change is software that
isn’t used. Designing for change is designing for
success.

Apply:
• “information hiding”,

• “abstraction”,

• “separation of concerns”,

• “data hiding”, or

• “object orientation”.

Begin by characterising the likely classes of changes.

Estimate the probabilities of each type of change.

Organise the software to confine likely changes to a
small amount of code.

Provide an “abstract interface” that abstracts from the
changes.

Implement “objects” that hide changeable data
structures.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

19

Preventive medicine

These are old ideas. Have they failed?
When I examine industry code, I donot see consistent
application of the principle.
• Many textbooks on software mention this technique, but they

cover it in a superficial way. The principle is simple; applying it
requires a lot of thought.

• Many programmers are too impatient. They find the design of
abstract interfaces boring.

• Deadlines do not allow time to design for change.

• Designs that result from a careful application of information are
not natural for many program designers.

• Designers mimic older designs.

• Many confuse design principles with choice of language.

• Many software designers are self-taught (or worse)!

• Researchers are “preaching to the choir” ignoring old unsolved
problems and unused solutions because they want to innovate.

The principle hasn’t failed; we have failed to apply it.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

20

Don’t Depend on Mirac le Drugs

Our field is filled with snake-oil salesmen:

• Structured Design

• Knowledge-Based Software Engineering

• O-O-O-O Technology

• Dr. Somebody’s miracle drug

They promise easy solutions, but there are none.

Good design ishard. It requires:
• careful consideration of possible changes,

• careful examination of constraints,

• careful design of interfaces

• careful review

• qualified people

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

21

Don’t Depend on Langua ges

Programming Languages have been touted as the
miracle solution since their first appearance.

Nobody wants to go back to assembler, but ...

We must recognise that software problems never
went away in spite of the introduction of
FORTRAN, ALGOL, PL/I, ADA and PROTEL.

You can do bad design in the best languages.

You can do good design in the worst languages.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

22

Preventive Medicine

Medical records - documentation
Design concepts and decisions are not recorded.

Documentation is neglected by researchers.

Documentation is neglected by practitioners.

Some believe that the code is its own documentation;
• they have never read other people’s code or

• their own code 10 months later.

Documentation is usually poorly organised,
incomplete and imprecise.

Often the coverage is random, written when time and
interest are there.

Where documentation is a contractual requirement, it
is often done by people who need the documentation.

Some projects keep two sets of books.

Documentation that seems clear today, may be
impenetrable tomorrow.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

23

Preventive Medicine

Medical records - documentation

Documentation is not an “attractive” research topic.
• Researchers yawn,

• Everyone confuses it with proofs. Documentation
must be “blah blah”.

• Developers ask if it will speed up their next release.

• Students try to do as little as possible.

Although there is never enough time to do
documentation using design, there is always enough
time to hunt for the information when it is needed.

It is your responsibility as an engineer to produce
accurate design documents as you work on a design
and to keep them up-to-date.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

24

Preventive Medicine

We must start taking documentation more
seriously.
As in other kinds of engineering documentation,
software documentation must be based on
mathematics.
• Each document will be a representation of one or

more mathematical relations.

• The notation must be concise.

• The notation must be precise.

• The notation must be formally defined.

The notation must be based on engineering
mathematics, not theorem proving logic.

Logic is a descriptive tool, not just a reasoning tool.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

25

Preventive Medicine

Second opinions - reviews
Reviews are standard practice in Engineering

They arenot standard practice among programmers.
Why?
• Not engineers, “fallen” scientists and mathematicians.

• Professionalism not taught in “liberal” education.

• Lack of professional documentation to review against. Review
becomes “show and tell” followed by a chat.

• Cottage industry - no reviewers.

• Time-pressure leads to a “short cut” to a long road.

• This is an “art”; I do it my way.

Designers naturally focused on short-term goals.

Reviewers must represent long-term interests of the
manufacturer or client.

Review for ease of change, must become standard.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

26

Why Conventional Re views are Ineff ective

(1) The reviewers are swamped with information,.

(2) Most reviewers are not familiar with design
goals.

(3) There are no clear individual responsibilities.

(4) Reviewers can avoid potential embarrassment
by saying nothing.

(5) The review is conducted as a large meeting
where detailed discussions are difficult.

(6) Presence of managers silences criticism.

(7) Presence of uninformed may turn the review
into a tutorial.

(8) Specialists are asked general questions.

(9) There is no systematic review procedure.

(10)Unstated assumptions (subtle design errors) may
go unnoticed.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

27

Effective Re views are Active Re views

A dilemma:
• Errors in design documents should be foundbefore

the documents/systems are used.
• Errors in documents are usually foundwhen the

documents are used.
Another dilemma:

• Everyone’s work requires review
• It’s easier to say “OK” than to find subtle errors
• Reviewer’s work is not reviewed.

One more dilemma:
• No individual knows enough to review all aspects of

a design.
• When working in a group, people tend to relax in the

belief that others are working the problem.
Solutions:

• Make the reviewers use the documents.
• Make the reviewers document their analysis.
• Have specialised reviews. Ask the reviewer about

things that they know.
• Make the reviewers provide specifics not “ok”.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

28

Reviewing Design Documents

Design the review process based on the nature of the
document.

Begin by identifying desired properties.

Prepare questionnaires for the reviewers. Ask them
questions that:
• make them use the document.

• make them demonstrate that the desired properties
are present.

• ask for sources of information to support the answers
to other questions.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

29

Inspecting Pr ograms

It is the code that “hits the road”.

Getting the requirements right, the structure right,
the interfaces right, the structure right, etc. are all
important but we have to check the code.

The same review principles apply.
• Make the reviewers use the material they review.
• Make the reviewers answer questions.
• Ask the reviewer about things that they know.
• Make the reviewers provide specifics.

We want to compare the completed programs with
previously reviewed specifications.

We ask the reviewers to produce descriptions.

We then show that the descriptions match the
specifications.

It is hard work but it produces results.
• We get good documentation for future use

• We find errors in the best industrial code - programs
that were considered correct.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

30

Software a ging is ine vitab le

Our ability to design for change depends on our
ability to predict the future.

We will make changes that violate our original
assumptions.

Documentation, even if formal and precise, will
never be perfect.

Reviews will overlook some issues.

Preventive measures are worthwhile, but we cannot
eliminate aging.

We have to think about how to care for aging
software.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

31

Software g eriatrics

Stopping the deterioration
• The first step: slow the deterioration.

• Introducing or recreating, structureevery time that changes are
made.

• Design principles can guide maintenance.

• Revised data structure or algorithm can be hidden.

• Careful reviews must insure that each change is consistent with
the intent of the original designers,

Easier to say than to do.
• It is hard to practice caution in the good times.

• “Cancerous growths” (new versions) often accepted by people in
a hurry.

• New versions must be examined and a good family structure
found.

• All versions must fit in that mould.

• New documents must be created and reviewed.

Nobody wants to take the time in good times.

“Wehavemoreimportantthingsto do.” is oneof the
biggest lies in the industry.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

32

Software Geriatrics

Retroactive documentation
To slow the aging upgrade the documentation!

Documentation too often neglected in maintenance
• “There is no time”.

• “It’s already so bad, we can’t fix it.”

• “Let’s just put a memo in the file”.

Correcting the documentation can be a major
project, but worth undertaking.

Redoing the documentation often leads to
improvements in the software.

Writing the documentation is a way to study and
understand the software.

It makes the next person’s job easier too.

However, if there is a large family created by
cancerous growth, restructuring may be a only
practical prerequisite for documentation.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

33

A small sample of precise
documentation

Specification

Tables have a formally defined meaning.

Done without specifying proof rules.

Documentation is not verification.

UseColr external variables:v, r, w, b, colr, colw

R5(,) = partial_flag(‘v, ‘r, ‘w, ‘b) ∧ (‘colr = ‘v‘w) ∧
(‘r ≤ ‘w) ∧ ((‘r < ‘w) ⇒ (‘colr ≠ red))

⇒
partial_flag(v’, r’, w’, b’) ∧ same_colors(‘v,v’) ∧

‘colr =

red white blue

r’ | r’=‘ r + 1 NC(r) NC(r)

w’ | NC(w) w’ =‘ w−1 w’= ‘w −1

b’ | NC(b) NC(b) b’ =‘ b −1 ∧ NC
(colr,colw)

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

34

Software g eriatrics

Plastic surgery

New modules can be introduced when making
necessary changes.

Revised decisions can be hidden.

Often, saves work when change is made.

Will save work in the future.

Must be done throughout product when it is done.

Must be documented.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

35

Software g eriatrics

Amputation

Some code has been modified so often, and so
thoughtlessly, that it is not worth saving.

Often it should never have been written at all.

The authors and owners are hesitant to see it go.

Short-term pain for long-term gain.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

36

Software g eriatrics

Major sur gery - restructuring
First step - reduce the size of the program family.

Examine the various versions to determine why they
differ.

Chose between parameterisation and hiding.
• Hide differences wherever that is possible.

• In other cases, make the difference a parameter.

• Replace many versions with one - abandoning the
family lines that are replaced.

• Pay with “run time” and “system-construction time”
rather than programming time.

It often pays to ship the same code to everyone -
even those who have not paid for all the features.

Such a program is called “general” and the features
can be “turned off”.

“Flexible Programs” are distinct from “General
Programs”. They are easily changed.

“Parameterisation” is one form of “flexibility”.

 McMaster University

September 9, 1998 13:56

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

37

Taking Responsibilities Seriousl y

Professional Engineers have responsibilities:
• Not to do shoddy work even if the boss says so

• Not to release work without adequate review

• Not to release work without good documentation

• Not to release work without adequate testing

• Not to release work without adequate inspection.

• To keep up with the latest in their profession.

Managers have responsibilities too!
• Don’t just think about this product

• Don’t just think about today

• Think about the whole product line and future
products.

• Give your employees the time to do it right

• Make sure it is done right. Reward quality

• Read Dilbert and think about it.

	Software Aging
	David Lorge Parnas
	McMaster University, Hamilton, Ontario, Canada L8S 4K1
	Programs, like people, get old. We can’t prevent aging, but we can understand its causes, take st...

	Structural Aging
	Buildings, like people, get old. We can't prevent aging, but we can understand its causes, take s...

	More Causes of Software Aging
	Ignorant surgery
	Designers of software had simple concept in mind when writing the program.
	Understanding that concept allows one to find sections to be altered.
	Understanding that concept means understanding the interfaces.
	Changes made without understanding design concept almost always invalidate it.
	Changed code is inconsistent with the original concept.
	After changes, one must know both the original design concept, and the exceptions.
	After such changes, the original designers no longer understand the product.

	Nobody understands the modified product.

	What Causes Software Aging?
	Two basic types of software aging:
	• Failure to keep up with changing environment,
	• Tissue damage resulting from maintenance.
	A “one-two punch”!
	Damned if you do; damned if you don’t.
	Both lead to a decline in the value of a software product.

	Causes of Software Aging
	Lack of movement
	• Our expectations have changed
	• We are no longer willing to use the clumsy software interfaces of yesterday.
	• We demand interactive access; don’t even think about batch systems.
	• Old software would still do its job if used, but nobody would use it.
	• Old software can be modified and extended to meet modern expectations.
	• Old software must compete with young products
	When changes are not made, it seems as if the software has aged!
	A product that was considered great a few years ago, is not useful although it hasn’t changed.

	Taking Responsibilities Seriously
	Professional Engineers have responsibilities:
	• Not to do shoddy work even if the boss says so
	• Not to release work without adequate review
	• Not to release work without good documentation
	• Not to release work without adequate testing
	• Not to release work without adequate inspection.
	• To keep up with the latest in their profession.

	Managers have responsibilities too!
	• Don’t just think about this product
	• Don’t just think about today
	• Think about the whole product line and future products.
	• Give your employees the time to do it right
	• Make sure it is done right. Reward quality
	• Read Dilbert and think about it.

	More Causes of Software Aging
	Ignorant surgery (continued)
	When nobody understands the product,
	• Changes take longer.
	• Changes are more likely to introduce “bugs”.

	The problem is exacerbated when maintainers do not have time to update the documentation.
	The documentation becomes increasingly inaccurate thereby making future changes even more difficult.

	More causes of software aging
	Cancerous Growth
	We live in a world that requires many versions of a software product.
	Many companies allow the product line to split, with the second line inheriting the properties of...
	This policy leads to explosive, difficult to constrain, growth.
	Changes must be made to many versions instead of to one.
	The cost of maintenance gets very high.
	It is no longer possible to keep up with the market on all the versions.
	The diversity grows and is hard to stop.

	Pseudo Software Aging
	Kidney failure
	Often confused with software aging!
	Failure to release allocated memory.
	Files require pruning.
	Swap and file space are diminished.
	Performance degrades.
	Often a congenital design failure.
	Can strike at any age.
	May be the result of ignorant surgery
	May be exacerbated by changing usage patterns.
	Perceived as “leaking”.
	More easily cured than aging!
	• Dialysis: cleans up the file system and memory
	• Kidney transplant: new allocation routines, garbage routines

	The Costs of Software Aging
	Reduced performance
	The size of the program grows.
	More demands on the computer memory.
	More delays caused by swapping.
	Performance decreases because of poor (poorly understood) design.
	Customers must upgrade their hardware to get acceptable response.
	Some customers switch to younger products to obtain better performance.

	The Costs of Software Aging
	Decreasing reliability
	Errors are introduced.
	Each error corrected may introduce more than one error.
	Improvements can make things worse.
	Often a product must be abandoned.
	Some products that we use daily have thousands of known bugs.
	Large groups are devoted to customer requested repairs.

	Nobody is shocked by such statements

	Reducing the costs of Software Aging Neo-Natal Phase
	Outgrow “ran the first time” elation.
	• It is not “right the first time” that matters.
	• “Clean compile” means even less.

	“Configuration Management” while vitally important, is a losing battle with increasing entropy. I...
	Controlling software aging, requires good design, not just good management.

	Software geriatrics begins with neo-natal care!
	Why Conventional Reviews are Ineffective
	(1) The reviewers are swamped with information,.
	(2) Most reviewers are not familiar with design goals.
	(3) There are no clear individual responsibilities.
	(4) Reviewers can avoid potential embarrassment by saying nothing.
	(5) The review is conducted as a large meeting where detailed discussions are difficult.
	(6) Presence of managers silences criticism.
	(7) Presence of uninformed may turn the review into a tutorial.
	(8) Specialists are asked general questions.
	(9) There is no systematic review procedure.
	(10) Unstated assumptions (subtle design errors) may go unnoticed.

	Preventive Medicine
	Medical records - documentation
	Design concepts and decisions are not recorded.
	Documentation is neglected by researchers.
	Documentation is neglected by practitioners.
	Some believe that the code is its own documentation;
	• they have never read other people’s code or
	• their own code 10 months later.

	Documentation is usually poorly organised, incomplete and imprecise.
	Often the coverage is random, written when time and interest are there.
	Where documentation is a contractual requirement, it is often done by people who need the documen...
	Some projects keep two sets of books.
	Documentation that seems clear today, may be impenetrable tomorrow.

	Preventive Medicine
	We must start taking documentation more seriously.
	As in other kinds of engineering documentation, software documentation must be based on mathematics.
	• Each document will be a representation of one or more mathematical relations.
	• The notation must be concise.
	• The notation must be precise.
	• The notation must be formally defined.

	The notation must be based on engineering mathematics, not theorem proving logic.
	Logic is a descriptive tool, not just a reasoning tool.

	Preventive Medicine
	Second opinions - reviews
	Reviews are standard practice in Engineering
	They are not standard practice among programmers. Why?
	• Not engineers, “fallen” scientists and mathematicians.
	• Professionalism not taught in “liberal” education.
	• Lack of professional documentation to review against. Review becomes “show and tell” followed b...
	• Cottage industry - no reviewers.
	• Time-pressure leads to a “short cut” to a long road.
	• This is an “art”; I do it my way.

	Designers naturally focused on short-term goals.
	Reviewers must represent long-term interests of the manufacturer or client.
	Review for ease of change, must become standard.

	Software Aging is Nonsense!
	• Software is a mathematical product.
	• Mathematics doesn’t decay with time.
	• If a theorem was correct 200 years ago, it will be correct tomorrow.
	• If a program is correct today, it will be correct 100 years from now.
	• If it is wrong 100 years from now, it must have been wrong when it was written.
	• It makes no sense to talk about software aging.

	True, but not really relevant.
	Software Does Get Old and it costs more in old age than it did at birth.

	Software Products Do Exhibit Aging!
	It may not be aging but it sure feels like aging.
	• Old software has begun to cripple its once-proud owners.
	• Old products are considered a burdensome legacy
	• Obesity often accompanies aging.
	• Increasing effort required to support legacy software.
	• Like human aging, software aging is inevitable, but
	• there are things that we can do to slow down the process.
	• Sometimes, we can reverse its effects (temporarily).

	Software aging is not a new phenomenon.
	Software aging is gaining in significance.
	Owners of new software products often look at aging software with disdain.
	“The new products won’t age. They are written in Object C-dula ++” and using xx.oriented techniqu...
	Some of those old products were once proud youth, and written using the latest fad.
	There is no fountain of youth.

	The Costs of Software Aging
	Inability to keep up with others
	Younger products have desired features.
	Younger products can be adapted more quickly.
	Younger products win more market share.
	Obese products consume more resources
	Older products starve to death because they cannot catch new “prey” and they need more “food”.

	More Causes of Software Aging
	Aging and Disappearing Programmers
	Programmers move on to other projects.
	Programmers get promoted to managers.
	Programmers forget what they did and why they did it.
	Programmers change their “style”.

	More Causes of Software Aging
	Bad Documentation
	• Information not available.
	• Information not correct.
	• Information hard to find.
	• Information must be verified.
	• Information is imprecise, easily misinterpreted.
	Documents are not kept “alive”.
	The situation keeps getting worse.
	Movement is visibly slower
	• It takes time to find information
	• It all has to be verified.

	That is why you will find so much emphasis on precise and clear documentation in this class and o...

	Reducing the Costs of Software Aging Neo-Natal Phase -Preventive Medicine
	Design for success!
	The only software that doesn’t change is software that isn’t used. Designing for change is design...
	Apply:
	• “information hiding”,
	• “abstraction”,
	• “separation of concerns”,
	• “data hiding”, or
	• “object orientation”.
	Begin by characterising the likely classes of changes.
	Estimate the probabilities of each type of change.
	Organise the software to confine likely changes to a small amount of code.
	Provide an “abstract interface” that abstracts from the changes.
	Implement “objects” that hide changeable data structures.

	Preventive Medicine
	Medical records - documentation
	Documentation is not an “attractive” research topic.
	• Researchers yawn,
	• Everyone confuses it with proofs. Documentation must be “blah blah”.
	• Developers ask if it will speed up their next release.
	• Students try to do as little as possible.

	Although there is never enough time to do documentation using design, there is always enough time...
	It is your responsibility as an engineer to produce accurate design documents as you work on a de...

	Software aging is inevitable
	Our ability to design for change depends on our ability to predict the future.
	We will make changes that violate our original assumptions.
	Documentation, even if formal and precise, will never be perfect.
	Reviews will overlook some issues.
	Preventive measures are worthwhile, but we cannot eliminate aging.
	We have to think about how to care for aging software.

	Software geriatrics
	Stopping the deterioration
	• The first step: slow the deterioration.
	• Introducing or recreating, structure every time that changes are made.
	• Design principles can guide maintenance.
	• Revised data structure or algorithm can be hidden.
	• Careful reviews must insure that each change is consistent with the intent of the original desi...
	Easier to say than to do.
	• It is hard to practice caution in the good times.
	• “Cancerous growths” (new versions) often accepted by people in a hurry.
	• New versions must be examined and a good family structure found.
	• All versions must fit in that mould.
	• New documents must be created and reviewed.

	Nobody wants to take the time in good times.
	“We have more important things to do.” is one of the biggest lies in the industry.

	Software Geriatrics
	Retroactive documentation
	To slow the aging upgrade the documentation!
	Documentation too often neglected in maintenance
	• “There is no time”.
	• “It’s already so bad, we can’t fix it.”
	• “Let’s just put a memo in the file”.

	Correcting the documentation can be a major project, but worth undertaking.
	Redoing the documentation often leads to improvements in the software.
	Writing the documentation is a way to study and understand the software.
	It makes the next person’s job easier too.
	However, if there is a large family created by cancerous growth, restructuring may be a only prac...

	A small sample of precise documentation
	Tables have a formally defined meaning.
	Done without specifying proof rules.
	Documentation is not verification.

	Software geriatrics
	Plastic surgery
	New modules can be introduced when making necessary changes.
	Revised decisions can be hidden.
	Often, saves work when change is made.
	Will save work in the future.
	Must be done throughout product when it is done.
	Must be documented.

	Software geriatrics
	Amputation
	Some code has been modified so often, and so thoughtlessly, that it is not worth saving.
	Often it should never have been written at all.
	The authors and owners are hesitant to see it go.
	Short-term pain for long-term gain.

	Software geriatrics
	Major surgery - restructuring
	First step - reduce the size of the program family.
	Examine the various versions to determine why they differ.
	Chose between parameterisation and hiding.
	• Hide differences wherever that is possible.
	• In other cases, make the difference a parameter.
	• Replace many versions with one - abandoning the family lines that are replaced.
	• Pay with “run time” and “system-construction time” rather than programming time.

	It often pays to ship the same code to everyone - even those who have not paid for all the features.
	Such a program is called “general” and the features can be “turned off”.
	“Flexible Programs” are distinct from “General Programs”. They are easily changed.
	“Parameterisation” is one form of “flexibility”.

	The costs of software aging
	Rapidly Rising Maintenance Costs
	It’s harder to know where to make changes.
	Changes are harder to make.
	There are more errors.
	Testing becomes more of a burden.
	Documentation takes longer to update.

	Software Aging in the Telecom Industry
	Nowhere is software aging more evident than in the telecom industry!
	• There is a great demand for change
	• There is a lot of competition
	• Interoperability increases the demand for change
	• Interoperability increases the competitive pressure
	• The need to move into markets fast has led to cancerous growth
	• Rapid change has led to obesity and bad structure.
	• Documentation is often postponed until slower times.
	• Rapid growth has led to “ignorant” surgery.

	Don’t Depend on Miracle Drugs
	Our field is filled with snake-oil salesmen:
	• Structured Design
	• Knowledge-Based Software Engineering
	• O-O-O-O Technology
	• Dr. Somebody’s miracle drug

	They promise easy solutions, but there are none.
	Good design is hard. It requires:
	• careful consideration of possible changes,
	• careful examination of constraints,
	• careful design of interfaces
	• careful review
	• qualified people

	Don’t Depend on Languages
	Programming Languages have been touted as the miracle solution since their first appearance.
	Nobody wants to go back to assembler, but ...
	We must recognise that software problems never went away in spite of the introduction of FORTRAN,...
	You can do bad design in the best languages.
	You can do good design in the worst languages.

	Preventive medicine
	These are old ideas. Have they failed?
	When I examine industry code, I do not see consistent application of the principle.
	• Many textbooks on software mention this technique, but they cover it in a superficial way. The ...
	• Many programmers are too impatient. They find the design of abstract interfaces boring.
	• Deadlines do not allow time to design for change.
	• Designs that result from a careful application of information are not natural for many program ...
	• Designers mimic older designs.
	• Many confuse design principles with choice of language.
	• Many software designers are self-taught (or worse)!
	• Researchers are “preaching to the choir” ignoring old unsolved problems and unused solutions be...

	The principle hasn’t failed; we have failed to apply it.

	Effective Reviews are Active Reviews
	A dilemma:
	Another dilemma:
	One more dilemma:
	Solutions:

	Reviewing Design Documents
	Design the review process based on the nature of the document.
	Begin by identifying desired properties.
	Prepare questionnaires for the reviewers. Ask them questions that:
	• make them use the document.
	• make them demonstrate that the desired properties are present.
	• ask for sources of information to support the answers to other questions.

	Inspecting Programs
	It is the code that “hits the road”.
	Getting the requirements right, the structure right, the interfaces right, the structure right, e...
	The same review principles apply.
	We want to compare the completed programs with previously reviewed specifications.
	We ask the reviewers to produce descriptions.
	We then show that the descriptions match the specifications.
	It is hard work but it produces results.
	• We get good documentation for future use
	• We find errors in the best industrial code - programs that were considered correct.

