
 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

1/22 autotest3.slides.fm5

Module Interface Documentation and Testing

David Lorge Parnas
Department of Electrical and Computer Engineering

McMaster University, Hamilton, Ontario Canada L8S 4K1

Outline

(1) What is a module? What is an object?

(2) Black boxes and traces

(3) Multi-object operations and traces

(4) Simplified traces for deterministic modules

(5) Predicates on traces

(6) Canonical representations of abstract states

(7) Module interface documentation

(8) Module simulation, simulators as oracles

(9) Traces as test cases, test case (trace) generation

(10)How long must a test case be? Module design to reduce test
case length

(11)Documentation and grey box testing

(12) Integrated module testing tools

 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

2/22 autotest3.slides.fm5

Modules and Objects(1)

History

Modules introduced as a management tool
People should be able to work independently
Information Hiding introduced as design guideline.
• design is not management
• good design makes management easier.
Early IH Modules created a single object.
Abstract Data Type Concept allowed many objects
of the same type to be created by a single module.
Objects are nothing more than program variables.
Language designers add meaning to terms, e.g.
by introducing inheritance.
Language designers restrict programmers by means
of implementation assumptions. (e.g. calls)

It is important not to overload these terms and stick
to the basic meanings.

Language designers allow old design errors to look
like new technology.



 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

3/22 autotest3.slides.fm5

Why We Need Module Interface Descriptions

(1) Multiperson projects

(2) Multiversion projects

(3) Our inability to do much” (E. W. Dijkstra).
• Each subtask should have a definition independent
of the rest of the job.

(4) Making early decisions explicit and precise.
• Intramodule assumptions.
• Decision postponement.

(5) To allow an independent test group to work

(6) To allow test case generation

(7) To allow test result evaluation

 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

4/22 autotest3.slides.fm5

Modules and Objects (2)

It is wise to design software by designing classes of
objects.

Each object is implemented by a module (a set of
programs) using a data structure that is “hidden
from” (never accessed directly by) programs outside
the module.

Changing the state of the object, or getting
information about the object’s state, is only done by
invocations of programs from the module.

Definition:
An objectis a finite state machine. The input alphabet
of the object is the set of operations that one can
perform upon the object. The output alphabet of the
object is the set of values that can be returned by such
operations. ❑

Describing or specifying objects isvery different
from describing or specifying programs.

Because the data structure is hidden, we must
describe behaviour in terms of event sequences.



 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

5/22 autotest3.slides.fm5

Descriptions of Objects (1)

We want “black box” descriptions of objects,

For such descriptions, references to the data
structure used in the module are inappropriate.

For black box descriptions of finite state machines,
the only information that can be mentioned are the
externally visible events, i.e. sequences of inputs and
outputs. We call such sequencestraces.

Definition:
A traceof a finite state machine is a finite sequence of
pairs, each containing a member of the input alphabet
and a member of the output alphabet. A trace, T, is
consideredpossiblefor machine M, if M could react to
the sequence of inputs in T by emitting the sequence of
outputs in T. ❑

A description must tell its reader whether or not any
specific trace is possible for the object(s) in
question.

 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

6/22 autotest3.slides.fm5

Simplified T races f or Deterministic Modules

Most of the modules that interest us are
deterministic.

The output is determined by the input history.

The outputs in the trace are redundant

The outputs can be deleted.

A trace becomes a sequence of inputs.

The output is specified as a function of the trace.



 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

7/22 autotest3.slides.fm5

Descriptions of Objects (2)

Descriptions and specifications of objects can both
be written as predicates on classes of traces.

Competence sets are not usually needed; programs
implementing objects are assumed to terminate.

Any description or specification must be interpreted
as a predicate on traces.

The issue is how to write such predicates
• in a way that is easily read and used as a reference
• in a way that can be checked for completeness
• in a way that can be used for testing
• in a way that does not suggest implementations
• in a way that does not unnecessarily restrict
implementations.

 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

8/22 autotest3.slides.fm5

Module vs. Pr ogram Specifications

Programs do not hide data.

Program effects can be described in terms of data
structure.

Program effects are visible immediately.

Modules have hidden data.

Module specifications may not mention the data
structure.

Module effects can have delayed visibility.

We use relational specifications for programs.

We use “trace assertions” for modules.

The two are completely compatible.



 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

9/22 autotest3.slides.fm5

Canonical Representation of Abstract States

Definition:
Two objects are in the sameabstract stateif the user,
working through the interface, cannot distinguish their
states by some sequence of operations. ❑

There may be many internal states corresponding to each
abstract state.
We need a way to represent abstract states.
We can use traces as representations. The history is all
that the user can know about the object state, but ...
Many traces may result in the same abstract state.
We can use a canonical trace as a representation of the
abstract state.

Definition:
A canonical traceis a unique trace chosen to represent
the equivalence class of traces resulting in the same
abstract state. ❑

We have been using canonical traces as unique
representations of abstract states.
We are finding other canonical representations,
consisting of queues and stacks, to be better (more
readable).

 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

10/22 autotest3.slides.fm5

Module Interface Documentation:
Example: 12 Element Queue

(1) Syntax

ACCESS PROGRAMS

(2) Canonical representation

(rep =< )>∧

(3) Trace Extension Functions1

ADD([rep],a)≡

REMOVE([rep])≡

FRONT([rep])≡

Program Name Value Arg#1

ADD <integer>

REMOVE

FRONT <integer>

1 We use “.” to denote sequence concatenation. [ ] enclose implicit arguments to functions.

conditions new rep extension class

n = 12 rep %full%

n < 12 rep.a

conditions new rep extension class

rep = _ rep %empty%

rep≠ _
< >

conditions new rep extension class Value returned

rep = _ rep %empty%

rep≠ _ rep a1

ai[ ]i 1=
n

0 n 12≤ ≤( )

ai[ ]i 2=
n



 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

11/22 autotest3.slides.fm5

Module Interface Documentation

How this document defines a predicate on traces.

(1) The syntax restricts the set of traces to those that
could be executed.

(2) Using the trace extension functions repeatedly
we can find the canonical representation for any
trace allowed by the syntax. Even “error cases”
are included in this description.

(3) For each trace, after finding its canonical
representation, the value functions tell us the
values that will appear in the trace.

(4) If a trace cannot be generated in this way, it is
not in the set of traces characterised by the
predicate, i.e. it should not happen.

(5) Extension classes are optional. There is a default
class denoted by the empty string.

 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

12/22 autotest3.slides.fm5

Module Interface Documentation

How can we check this document for completeness?

(1) There must be an extension function for each
program mentioned in the syntax.

(2) There must be a value column or table for each
program that returns values. Note that any
parameter may return values; there should be a
column or table for each.

(3) Each table must cover all possible values.



 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

13/22 autotest3.slides.fm5

Module Interface Documentation

How could we use this documentation for simulation?

(1) Check the syntax for each call

(2) Determine the canonical representation for the
abstract state.

(3) Determine values.
Non-Determinism

Extension “functions” can be relations

Values returned can be relations

Simulator can either
• make a random choice
• follow all possible paths
• check a predicate if comparing with an
implementation.

These simulation techniques can be used as test
oracles.

 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

14/22 autotest3.slides.fm5

Traces as T est Cases

Traces (without the output values) represent test
cases.

Using the specification we can generate syntactically
correct test cases or, if we want them, incorrect
cases.

For early testing, we can use the tables to generate
test sets that cover every row in the tables and
provide uniform case coverage.

For reliability estimation, we want the distribution of
test cases to resemble actual usage. We must provide
a description of the “operational profile”.

We need distributions for argument values.

We need to classify abstract states and provide
probability distributions for extensions in each class.

Some Approaches:
• Transition probability matrix
• Transition matrix based on extension combined
with extension probability matrix

• Classification Predicates combined with extension
probability matrix



 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

15/22 autotest3.slides.fm5

How long m ust test cases be?

In theory, long enough to return the module to a
previously tested (internal) state.

In practice, this is not generally possible.

If we want to design for testability, we can
implement so that there is a 1:1 mapping between
internal states and abstract states. This will usually
slow the implementation down.

Test parameterised specifications with small values
of the parameters.

It may be useful to initialise regularly.

 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

16/22 autotest3.slides.fm5

Connecting Object and Program Descriptions

Module Design Documentation

Module = private data structure + set of access programs
Design, usually in designer’s head, must be written down

Three essential elements:
(1) description of the data structure
(2) abstraction function

Domain: data states
Range: canonical abstract representations
(d, tr) is in the abstraction function if tr, is the
abstract representation of concrete data state, d

(3) program function (LD-relation)
- one for each possible invocation of each access

program

This is the information you need for pre-coding
design reviews.

This is the information that guides the programmer.

This information can be used for “grey box” testing.



 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

17/22 autotest3.slides.fm5

How can the workability of a design be verified?

For all possible invocations, the following must
hold:

Top level shows abstract state view.

Lower level shows implementation view.

Abstraction function maps between them.

•
trace extension function

•
abstraction

function

• •

abstraction

function

program function

 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

18/22 autotest3.slides.fm5

Example: Design Document for Queue12: Implementation 1

(1) DATA STRUCTURE

CONSTANTS

TYPES

VARIABLES

Abbreviation:

edge (R = F + 1)∨ (F = QSIZE-1)∧ (R = 0)
‘edge (‘R = ‘F + 1) ∨ (‘F = QSIZE-1)∧ (‘R = 0)
edge’ (R’ = F’ + 1) ∨ (F’ = QSIZE-1)∧ (R’ = 0)
<qs>  qds× 0..QSIZE-1× 0..QSIZE-1 × boolean

(2) ABSTRACTION FUNCTION

af: <qs> → <queue12>

af(DATA,F,R,FULL,old)

Constant Name Definition

QSIZE 12

Type Name Definition

<qds> array[0..QSIZE-1] of integer

Type Definition/Name Variables Initial Values

<qds> DATA “Don’t Care”

0..QSIZE-1 F, R “Don’t Care”

<boolean> FULL “Don’t Care”

<boolean> old false

(¬ edge∨ FULL) ∧ (F ≥ R)
∧ old

< DATA[F]. DATA[F −1] … . DATA[R] >

(¬ edge∨ FULL) ∧ (F < R)
∧ old

< DATA[F]. … . DATA[0] . DATA[QSIZE-1]. … . DATA[R] >

edge∧ ¬ FULL ∧ old <>

¬ old __

df

df

df

df

df



 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

19/22 autotest3.slides.fm5

(3) PROGRAM FUNCTIONS

pf_Q12INIT

gpf_ADD(a)  NC(F)∧ ∀j (j ≠ R’) [NC(DATA[j])] ∧ NC(a)∧

pf_REMOVE  NC(DATA,R)∧

pf_FRONT  NC(R,FULL, DATA, F)∧

pf_Name Arg#1 Value

pf_Q12INIT <qs> → <qs>

gpf_ADD <integer> <qs> × <integer> → <qs>

pf_REMOVE <qs> → <qs>

pf_FRONT <qs> → <qs> × <integer>

F’ = 0

R’ = 1

FULL’ = false

DATA’ | true

old = true

(‘R = 0) ∧ old ∧ (‘R ≠ 0) ∧ old ∧

¬ old‘edge ∧
 ¬ ‘edge

‘edge ∧
¬ ‘edge

‘FULL ¬ ‘FULL ‘FULL ¬ ‘FULL

DATA’[R’] = ‘DATA[‘R] a a ‘DATA[‘R] a a ‘DATA[‘R]

R’ = ‘R QSIZE-1 QSIZE-1 ‘R ‘R− 1 ‘R − 1 ‘R

FULL’ = ‘FULL false ‘F = QSIZE-2 ‘FULL false edge’ ‘FULL

(¬ ‘edge∨ ‘FULL) ∧ old ∧
(‘edge∧ ¬‘FULL) ∨¬ old

(‘F = 0) (‘F > 0)

F’ = QSIZE-1 ‘F− 1 ‘F

FULL’ = false false ‘FULL

¬ ‘edge∨ ‘FULL old ∧ (‘edge∧ ¬‘FULL) ∨ ¬ old

return value = ‘DATA[‘F]

df

df

df

df

 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

20/22 autotest3.slides.fm5

Using Module Design Documentation
in “Gre y Box” T esting.

We can do “black box” testing using conventional
black box test case generation strategies.

In “black box” testing we can only check results.

Errors may be discovered long after things went
wrong.

Using the design documents, we can check that the
abstraction function describes what actually
happens. We call this “grey box” testing.

If we check the program functions too (using the
oracle generator), it is “clear box” testing.

In “clear box” testing we use the data state to
determine test cases.

In “black box” and “grey box” testing, we use traces
to generate test cases.



 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

21/22 autotest3.slides.fm5

Integrated T esting T ools

ChunMing Li has combined our trace simulator
(Yabo Wang), and Test Case Generator (Denise
Woit), added some user interface features.

This tool allows you to:
(1) Provide a module interface specification.

(2) Provide an operational profile.

(3) Provide an implementation.

(4) Select some test criteria.

(5) Run tests.

(6) Receive a reliability estimate.

 McMaster University

July 26, 1996 14:54

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

22/22 autotest3.slides.fm5

Future W ork

Improved Statistical Measures.

Modernised TAM method.

More general table types.

Integration with other tools.

Better Operational Profile Specification.

More thought on the length of traces.

Mor e usage and feedback.


