SE 2A04 Fall 1999
Coding Style

Instructor: W. M. Farmer

Revised: November 15, 1999



General Recommendations

e Be consistent
e Choose clarity before efficiency

e EXxpress the structure of the software’s design in the
software'’'s code

e Follow the conventions of the programming language
being used



Keep the Code Simple

e \Write procedures that fit on one screen
e Put at most one programming statement on a line

o Keep the following measures low:

— Loop nesting level
— Conditional nesting level
— Number of local variables in a procedure

e Avoid control structures that radically change state

— EXxits, gotos, state jumps, self-modifying code

e Avoid nonstandard language features



Naming Programming Entities
e Naming is an important but difficult task

e One should employ a naming convention
— Names should be short and descriptive

— The more global the entity, the more descriptive
the name should be

— The more local, the shorter the name can be

e A name may include:

— Type of entity or return value
— Name of module

e \Words in @ name can be separated by underscores,
hyphens, and case changes, but avoid using spaces



Formatting Code

e Use formatting to display the structure of the code

— Indentation to display subordinate relationships
between code

— Alignment to identify blocks of code
— Blank lines to separate blocks of code

e Write fully bracketed code to facilitate maintenance
e Write code in tabular form whenever possible

e Avoid “wrap-around” code



Scope of Variables

e Make the scope of variables as narrow as possible

— Avoid global variables

e A wide-scoped variable is:

— Harder to maintain because its instances may appear
far apart from each other

— More easily corrupted because its data can be modified
by diverse procedures

e Decrease the scope of a variable by introducing
procedures for accessing the variable



Procedures

e Use a convention for naming and ordering parameters

e Make explicit and carefully control any side-effects

— Keep the use of side-effects to a minimum

e Make the scope of procedures as narrow as possible

e Any code fragment used more than once should be made
iNto a procedure

— Make procedures powerful

— Use simple procedures to invoke powerful procedures
In special ways



Code Documentation

e Components:

— Specification of what the code is required to do

— Pseudocode description of what the code does

— Commented code

— Proof that code’s behavior satisfies its specification
— Mapping of code specification back to the design

e Several approaches:

— Generate documentation from code files
— Generate code from documentation files
— Generate documentation and code from common files



Commenting Code

e Begin every system file with:

— Copyright statement

— Authors

— Revision date

— Description of contents

e Comment:

— Each variable declaration

— Each procedure definition

— Loops and larger blocks of code
— Anything that is not obvious

e Avoid excessive comments in procedure bodies

— Write code so that what it does is obvious



Recursion

e Recursion can make code easier to describe, write, and
prove correct

e Prove correctness using induction

e Simultaneous recursion is useful for defining a set of
interrelated entities

e Sloppy uses of recursion can lead to total confusion

e In some cases, recursion may be highly inefficient

— Use tail recursion in a programming language that
executes tail recursive calls in constant space

10



Error Messages

e Make error messages as informative as possible

— Indicate where in the code the error occurred
— Describe the situation that caused the error

o “Throw" lower-level errors to appropriate higher-level code

e Write error messages for both the user and the developer

11



Cconclusion

e Use an effective coding style

e Continuously look for ways of making your code:

— Simpler
— More powerful
— Better documented

e Make the structure of the software explicit

12



