
 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

1 complex.slides

Modular Structure of Complex Systems

David Lorge Parnas
Communications Research Laboratory

Department of Electrical and Computer Engineering
McMaster University, Hamilton, Ontario Canada L8S 4K1

Abstract

We describe a systematic procedure for
decomposing complex systems into modules. The
result is a hierarchical structure that is described in
a “module guide”, an informal document that
guides a maintainer or designer to the modules
affected by a change. The “guide” is largely
derived from a requirements document with the
result that there it is easy to trace requirements to
modules, or to identify the requirements that led to
a particular design decision.

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

2 complex.slides

Dividing Systems Into Modules

(1) What do we mean by “module”?
•A work assignment for a programmer or programmer team.

•No other meaning!

•No criteria in this definition.

(2) What would make a module structure good?
•Parts can be designed independently.

•Parts can be tested independently.

•Parts can be changed independently.

•Integration goes smoothly.

(3) What’s the principle?
•Each module’s implementation is a “secret”.

•Each module’s interface abstractly and precisely described.

•We abstract from implementation details likely to change.

•We parameterise changeable aspects that cannot be hidden.

(4) What are the buzzwords?
•Information Hiding

•Abstract Data Types

•Separation of Concerns

•Object Orientation

These are all the same principle .

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

3 complex.slides

What is different about complex systems?

There aremany implementation decisions.

There aremany details.

This leads to new issues:

•How can we keep the project under
intellectual control?

•How can we maintain conceptual integrity?

•How can we keep the maintenance cost down?

•How do we deal with unstructured lists of
modules?

•How can we tell when we have them all?

•How does everyone remember the names?

•How do we avoid duplication?

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

4 complex.slides

Why should we gr oup modules into
classes?

Put some structure in the list of modules.

Help to check for completeness.

Leads to more helpful naming conventions.

Makes duplications less likely.

Make a specific module easier to find.

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

5 complex.slides

What are some possib le classification
criteria f or modules?

A. By similarity of interface
•too vague

B. By ultimate purpose
•can be ambiguous

C. By type of “function” or service provided
•too vague

D. Similar programming problems
•implementation dependent

E. By nature of the secret
•limited to information hiding designs

•Must be unambiguous

•Requirements will be used to disambiguate when needed.

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

6 complex.slides

What are the c lasses of modules in the
SCR A-7E Module Structure

Top-level decomposition

 1. Hardware-hiding module

 2. Behaviour-hiding module

 3. Software decision module

If the secret is in the software requirements
document, it must be (1) or (2).

If it is not a requirement, it must be (3).

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

7 complex.slides

What are the c lasses of modules in the
SCR A-7E Module Structure

Second-level decomposition

1. Hardware-hiding module decomposition

1.1 Extended computer module

1.2 Device interface module

If it affects more than one device, consider it part
of the computer.

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

8 complex.slides

What are the classes of modules in the SCR
A-7E Module Structure

Second-level decomposition

2. Behaviour-hiding module decomposition

2.1 Function driver module

2.2 Shared services module

There will be one function driver for each
controlled variable.

Some judgement is required in identifying
variables.

If some behaviour should be consistent in two
modules, move it to a shared module?

Watch out for coincidences.

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

9 complex.slides

What are the c lasses of modules in the
SCR A-7E Module Structure

Second-level decomposition

3. Software decision module decomposition
3.1 Application data type module (objects)
3.2 Physical model module (active objects)
3.3 Data banker module (self-updating objects)
3.4 System generation module
3.5 Software utility module

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

10 complex.slides

What are the c lasses of modules in the
SCR A-7E Module Structure

Third-level Decomposition

1. Extended computer module decomposition
1.1 Data type module
1.2 Data structure module
1.3 Input/output module
1.4 Computer state module
1.5 Parallelism control module
1.6 Sequence control module
1.7 Diagnostics module (restricted)
1.8 Virtual memory module (hidden)
1.9 Interrupt handler module (hidden)

Note: independent change is unlikely but possible
simplification results from separation.

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

11 complex.slides

Third-level Decomposition

2. Device interface module decomposition
2.1 Air data computer
2.2 Angle of attack sensor
2.3 Audible signal device
2.4 Computer fail device
2.5 Doppler radar set
2.6 Flight information displays
2.7 Forward looking radar
2.8 Head-up display (HUD)
2.9 Inertial measurement set (IMS/IMU)
2.10 Panel

Note: continues on next slide

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

12 complex.slides

Third-level Decomposition

2. Device interface module decomposition(cont.)

2.11 Projected map display set (PMDS)
2.12 Radar altimeter
2.13 Shipboard inertial navigation system (SINS)
2.14 Slew control
2.15 Switch bank
2.16 TACAN
2.17 Visual indicators
2.18 Waypoint information system
2.19 Weapon characteristics
2.20 Weapon release system
2.21 Weight on gear

Note: Almost corresponds to hardware structure,
but not quite.

Exceptions are closely linked devices.

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

13 complex.slides

Third-level Decomposition

3. Function driver module decomposition
3.1 Air Data Computer functions
3.2 Audible Signal functions
3.3 Computer Fail Signal functions
3.4 Doppler Radar functions
3.5 Flight Information Display functions
3.6 Forward Looking Radar functions
3.7 Head-up Display (HUD)functions
3.8 Inertial Measurement Set (IMS/IMU) functions
3.9 Panel functions
3.10 Projected Map Display Set (PMDS) functions
3.11 Ships Inertial Navigation System (SINS)

 functions
3.12 Visual Indicator functions
3.13 Weapon release functions
3.14 Ground test functions

NOTES: input-only devices are missing!

each module can be further divided.

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

14 complex.slides

Third-level Decomposition

4. Shared services module decomposition
4.1 Mode determination module
4.2 Stage director module
4.3 Shared subroutine module
4.4 System value module
4.5 Panel I/O support module
4.6 Diagnostic I/O support module
4.7 Event tailoring module

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

15 complex.slides

Third-level Decomposition

5. Application data type module decomposition

Examples:
•Angles (several versions)

•Distances

•Temperatures

•Local data types for device modules

•STE (state transition event) variables

All of the above are objects

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

16 complex.slides

 Third-level Decomposition

6. Physical model module decomposition

6.1 Earth model module

6.2 Aircraft motion module

6.3 Spatial relations module

6.4 Human factors module

6.5 Weapon behaviour module

6.6 Target behaviour module

6.7 Filter behaviour module

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

17 complex.slides

Third-level Decomposition

7. Data banker module

•One for each real-time data item

•Value always up-to-date

•Secret: When to compute up-to-date value

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

18 complex.slides

Third-level Decomposition

8. Software utility module
•Resource monitor module

•Other shared resources

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

19 complex.slides

Documentation

• The module structure must be documented in a
module guide.

• Each module must have a precise and complete
interface description.

• Each implementation of a module requires a
module internal design document.

• Documents must be kept “alive”.

• Engineers will take advantage of mathematics
in the documentation.

 McMaster University

December 5, 1997

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

20 complex.slides

VI. Conc lusions

In complex systems, Information Hiding can be
carried out consistently.

Classify into small, obviously complete, non-
overlapping lists.

Show secrets not interfaces or roles.

Requirements Document essential for
disambiguation.

Devices Interface modules hide IN and OUT.

Function Driver modules hide NAT and REQ.

Each of the resulting modules creates one or more
objects (variables of a newly defined, abstractly
specified, data type).

Documentation essential!

•A module guide

•Module Interface Documents

•Module Design Documents (per design)

