= McMaster University =

Modular Structure of Complex Systems

David Lorge Parnas
Communications Research Laboratory
Department of Electrical and Computer Engineering
McMaster University, Hamilton, Ontario Canada L8S 4K1

Abstract

We describe a systematic procedure

for

decomposing complex systems into modules. The

result is a hierarchical structure that is describec
a “module guide”, an informal document th
guides a maintainer or designer to the modt
affected by a change. The “guide” is large
derived from a requirements document with t
result that there it is easy to trace requirements
modules, or to identify the requirements that led
a particular design decision.

d in
at

lles
ly
he
S to
to

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

complex.slides December 5, 1997

= McMaster University =

Dividing Systems Into Modules

(1) What do we mean by “module™?

A work assignment for a programmer or programmer team.

*No other meaning!
*No criteria in this definition.
(2) What would make a module structure good?
*Parts can be designed independently.
*Parts can be tested independently.
*Parts can be changed independently.
eIntegration goes smoothly.
(3) What's the principle?
*Each module’s implementation is a “secret”.

*Each module’s interface abstractly and precisely described.

*We abstract from implementation details likely to change.

*We parameterise changeable aspects that cannot be hidg
(4) What are the buzzwords?

eInformation Hiding

*Abstract Data Types

*Separation of Concerns

*Object Orientation

These are all the same principle

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

complex.slides December 5, 1997

o

en.

= McMaster University =

What is different about complex systems?

There aranary implementation decisions.
There arenary details.
This leads to n& issues:

*How can we keep the project under
intellectual control?

*How can we maintain conceptual integrity?
*How can we keep the maintenance cost dow

How do we deal with unstructured lists ¢
modules?

*How can we tell when we have them all?
*How does everyone remember the names?

*How do we avoid duplication?

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

complex.slides December 5, 1997

f

= McMaster University =

Why should we gr oup modules into
classes?

Put some structure in the list of modules.

Help to check for completeness.

Leads to more helpful naming conventions.

Makes duplications less likely.

Make a specific module easier to find.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

4 complex.slides December 5, 1997

= McMaster University =

What are some possib le classification
criteria f or modules?

A. By similarity of interface
*t00 vague

By ultimate purpose
ecan be ambiguous

By type of “function” or service provided
*t00 vague

. Similar programming problems
simplementation dependent

By nature of the secret
«limited to information hiding designs
*Must be unambiguous

*Requirements will be used to disambiguate when needed.

= McMaster University =

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

complex.slides December 5, 1997

What are the c lasses of modules in the

SCR A-7E Module Structure

Top-level decomposition

1. Hardware-hiding module
2. Behaviour-hiding module

3. Software decision module

If the secret is in the software requirements

document, it must be (1) or (2).

If it is not a requirement, it must be (3).

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

complex.slides December 5, 1997

= McMaster University =

What are the c lasses of modules in the
SCR A-7E Module Structure

Second-level decomposition

1. Hardware-hiding module decomposition
1.1 Extended computer module
1.2 Device interface module

—

If it affects more than one device, consider it par
of the computer.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

complex.slides December 5, 1997

= McMaster University =

What are the classes of modules in the SCR

A-7E Module Structure

Second-level decomposition
2. Behaviour-hiding module decomposition
2.1 Function driver module
2.2 Shared services module

There will be one function driver for each
controlled variable.

Some judgement is required in identifying
variables.

If some behaviour should be consistent in two
modules, move it to a shared module?

Watch out for coincidences.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

8 complex.slides December 5, 1997

= McMaster University =

What are the c lasses of modules in the
SCR A-7E Module Structure

Second-level decomposition

3. Software decision module decomposition
3.1 Application data type module (objects)
3.2 Physical model module (active objects)
3.3 Data banker module (self-updating objec
3.4 System generation module
3.5 Software utility module

ts)

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

complex.slides December 5, 1997

= McMaster University =

What are the c lasses of modules in the
SCR A-7E Module Structure

Third-level Decomposition
1. Extended computer module decomposition

1.1 Data type module

1.2 Data structure module

1.3 Input/output module

1.4 Computer state module

1.5 Parallelism control module

1.6 Sequence control module

1.7 Diagnostics module (restricted)
1.8 Virtual memory module (hidden)
1.9 Interrupt handler module (hidden)

Note: independent change is unlikely but possib
simplification results from separation.
Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
10 complex.slides December 5, 1997

= McMaster University =

Third-level Decomposition

2. Device interface module decomposition
2.1 Air data computer
2.2 Angle of attack sensor
2.3 Audible signal device
2.4 Computer fail device
2.5 Doppler radar set
2.6 Flight information displays
2.7 Forward looking radar
2.8 Head-up display (HUD)
2.9 Inertial measurement set (IMS/IMU)
2.10 Panel

Note: continues on next slide

= McMaster University =

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

11 complex.slides December 5, 1997

2. Device interface module decomposit{esnt.)

2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

Note: Almost corresponds to hardware structu
but not quite.

Exceptions are closely linked devices.

Third-level Decomposition

Projected map display set (PMDS)
Radar altimeter

Shipboard inertial navigation system (SIN
Slew control

Switch bank

TACAN

Visual indicators

Waypoint information system
Weapon characteristics
Weapon release system
Weight on gear

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

12 complex.slides December 5, 1997

S)

= McMaster University =

NOTES:

Third-level Decomposition

Function driver module decomposition

3.1 Air Data Computer functions

3.2 Audible Signal functions

3.3 Computer Fail Signal functions

3.4 Doppler Radar functions

3.5 Flight Information Display functions

3.6 Forward Looking Radar functions

3.7 Head-up Display (HUD)functions

3.8 Inertial Measurement Set (IMS/IMU) functions
3.9 Panel functions

3.10 Projected Map Display Set (PMDS) functions

3.11 Ships Inertial Navigation System (SINS)
functions

3.12 Visual Indicator functions
3.13 Weapon release functions
3.14 Ground test functions

input-only devices are missing!
each module can be further divided.

13

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

complex.slides December 5, 1997

U

= McMaster University =

Third-level Decomposition

4. Shared services module decomposition

4.1 Mode determination module
4.2 Stage director module

4.3 Shared subroutine module
4.4 System value module

4.5 Panel 1/0 support module

4.6 Diagnostic I/O support module
4.7 Event tailoring module

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

14 complex.slides December 5, 1997

= McMaster University =

= McMaster University =

Third-level Decomposition

Third-level Decomposition

5. Application data type module decomposition 6. Physical model module decomposition
Examples: 6.1 Earth model module
*Angles (several versions) 6.2 Aircraft motion module
«Distances 6.3 Spatial relations module
«Temperatures 6.4 Human factors module

sLocal data types for device modules

*STE (state transition event) variables

All of the above are objects

6.5 Weapon behaviour module
6.6 Target behaviour module
6.7 Filter behaviour module

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

15 complex.slides

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

December 5, 1997 16 complex.slides December 5, 1997

= McMaster University = = McMaster University =

Third-level Decomposition Third-level Decomposition
7. Data banker module 8. Software utility module
*One for each real-time data item *Resource monitor module
*Value always up-to-date «Other shared resources

*Secret: When to compute up-to-date value

Communications Research Laboratory Communications Research Laboratory
Software Engineering Research Group Software Engineering Research Group
“connecting theory with practice” “connecting theory with practice”

complex.slides December 5, 1997 18 complex.slides December 5, 1997

= McMaster University =

Documentation

The module structure must be documented i
module guide.

Each module must have a precise and comp
interface description.

Each implementation of a module requires
module internal design document.

Documents must be kept “alive”.

Engineers will take advantage of mathemat
in the documentation.

ete

CS

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

complex.slides December 5, 1997

= McMaster University =

VI. Conclusions

In complex systems, Information Hiding can be
carried out consistently.

Classify into small, obviously complete, non-
overlapping lists.

Show secrets not interfaces or roles.

Requirements Document essential for
disambiguation.

Devices Interface modules hide IN and OUT.
Function Driver modules hide NAT and REQ.

Each of the resulting modules creates one or mc
objects (variables of a newly defined, abstractly
specified, data type).

Documentation essential!
*A module guide

Module Interface Documents

*Module Design Documents (per design)

20

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

complex.slides December 5, 1997

bre

/

