
 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
1 hierarchy.slides

Introduction

A. Much disagreement about benefits and
disadvantages of hierarchical structures for
computer software.

B. Many different things meant by “hierarchical
structure”.

C. Nontrivial hierarchical structure always
implies restrictions placed on the programmer.

1. Restrictions may result in disciplined
programming and a quality product.

2. A given set of restrictions may not be
appropriate for all situations. They may
exclude good designs.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
2 hierarchy.slides

Definition of Structure

A. Division into parts

B. Relation between parts

C. Graphs can describe a structure

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
3 hierarchy.slides

Definition of Hierarchical Structure

A. A structure with no loops in its relation's graph.

B. Before you know what someone means by a
hierarchical structure, you must know the parts
and the relation.

C. Hierarchies not necessarily trees.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
4 hierarchy.slides

The Uses Hierarchy

A. Parts: programs

Relation: uses

B. Definition of uses:

Given program A with specification S and
program B, we say that A uses B if A cannot
satisfy S unless B is present and functioning
correctly.

3. Example: hardware for division uses
power supply

but calls divide by 0 routine

C. Virtual-machine analogy.

D. Found in T.H.E., also in many examples of
structured programming.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
5 hierarchy.slides

The “Gives Work” Hierarchy

A. Parts: processes

Relation:give an assignment to

Time: run time

B. Found in T.H.E.

C. Useful in guaranteeing termination and
preventing deadlock; neither necessary nor
sufficient.

D. In the T.H.E. system uses and gives work
hierarchies coincide.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
6 hierarchy.slides

The Resource Allocation Hierarchy

A. Parts: processes

Relation: “allocate a resource to” or “owns the
resources of”

Time: run time

B. Applicable with dynamic resource administration
only.

C. “Allocate to” vs. “controls”: The question of pre-
emption.

D. Advantages
1. Interference reduced or eliminated.

2. Deadlock possibilities reduced.

E. Disadvantages
1. Poor utilisation when load unbalanced.

2. High overhead when resources are tight
(especially with many levels).

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
7 hierarchy.slides

The Courtois Hierarchy

A. Parts: operations

Relation: takes more time and occurs
less frequently than.

Time: run time

B. Economics analogy.

C. T.H.E. comparison.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
8 hierarchy.slides

The Module Decomposition Hierarchy

A. Parts: modules

Relation: part of

Time: early design time

B. Never a loop in “part of” --module
decomposition always a hierarchy.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
9 hierarchy.slides

The Created Hierarchy

A. Parts: processes

Relation: created

Time: run time

B. Must be a hierarchy (father is older than son).

C. Why a tree?--team work in creating progeny is
accepted practice.

D. Sometimes implies unnecessary restrictions.

e.g. Father cannot die until all progeny die.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
10 hierarchy.slides

Forcing different structures to coincide

may lead to an unrealistic design

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
11 hierarchy.slides

Background on Extension and Contraction

A. Program families:

Different installations require different
capabilities.

1. Systems with different capacities.

2. Systems with different run-time
adaptability.

Spectrum: ONE to FIXED to VARYING

3. Users who want to program vs. turnkey
users.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
12 hierarchy.slides

Background on Extension and Contraction

B. Flexible systems: Easy to extend or subset.

1. Ability to remove access programs to make
room for other access programs.

2. Fail-soft response to loss of capacity.

3. The difference between flexibility and
generality.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
13 hierarchy.slides

Alternatives Available to the Software Producer

A. The supersystem: Generality costs!

B. A system for the “average” user: (who never
exists).

C. A set of independently developed systems (with
subtle differences).

D. A subsettable supersystem--each family member
offers a subset of the services provided by the
largest member.

1. Individual installations only pay for what
they need.

2. Ability to extend by adding programs,
without changing existing programs.

3. Incremental implementation possible.

4. Ability to contract by deleting whole
programs not modifying programs.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
14 hierarchy.slides

Uses Hierarchy Reviewed

A. Parts: Programs, not modules.

B. Relation: “Requires the presence of”.

C. Difference between “uses” and “calls”.

D. Why important

1. Determine possible subsets.

2. Determines possible fail-soft modes.

3. Allows phased integration, testing, and
delivery.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
15 hierarchy.slides

Design Error: Loops in Uses Relation

request and release
memory for tables

use tables to keep track
of memory assignments

Two dangers:

1. Memory allocator and table generator use each other

- Neither works until both work

- If either is removed, system no longer works

2. Memory allocator builds own tables

- Code duplication

TABLE HANDLING
PROGRAMS

MEMORY
ALLOCATOR

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
16 hierarchy.slides

Basic Steps in the Design of a Subsettable System

A. Requirements definition: Identify the subsets first.

B. List programs belonging to each module.

1. Access programs.

2. Internal programs--cannot be used directly by
programs outside the module.

3. Main programs--cannot be used--top level in
uses hierarchy.

C. For every pair of programs, three possibilities.

1. A may use B

2. B may use A

3. Neither may use the other.

D. List programs at level 0: Programs that use no other
programs.

E. Try to work up from there.

1. Level l programs use only level 0 programs

2. Level 2 programs use only level 0 or level 1
programs, etc.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
17 hierarchy.slides

Four Conditions for Allowing Program A to
Use Program B

1. A is simpler because it uses B.

2. B is not more complex because it is not allowed
to use A.

3. There is a useful subset containing B and not A.

4. There are no useful subsets containing A and
not B.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
18 hierarchy.slides

Conflict Removal: Sandwiching

If A and B use each other, can one be split into two
parts, i.e., a simple version and a complex version?

MESSAGE: A LEVEL IS NOT A MODULE
These are not “layers of abstraction”

TABLE HANDLING

PROGRAMS

 MEMORY

ALLOCATOR

TABLE ACCESS

PROGRAMS

request and release memory
for tables that vary in size

store and retrieve data
in previously created tables

keep track of memory assignments
in fixed sized tables

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
19 hierarchy.slides

Another Example: T.H.E. Conflict

Should synchronisation use memory allocation?

Shouldn't memory allocation use synchronisation?

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
20 hierarchy.slides

Another Example: Multics Conflict

Virtual Memory should use file system

File System should use virtual memory

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
21 hierarchy.slides

Each Level is a Virtual Machine

A. Definition: A set of variables and operations,
implemented in software.

B. Applications programs are simpler because
they use virtual machine programs.

C. Resources used to implement a virtual machine
not available to a program that uses the virtual
machine.

D. Upper level machines are LESS POWERFUL
than lower level machines.

E. Upper level machines are more convenient and
safer than lover level.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
22 hierarchy.slides

Deriving Subsets from the Uses Relation

A. Any level is a subset.

B. Can also omit parts of levels.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
23 hierarchy.slides

Evaluation Criteria for Uses Hierarchy

A. Simple.

B. Avoid duplication or almost alike programs.

C. All desirable subsets.

1. Without the subset constraints, anything
will work.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
24 hierarchy.slides

Principle of Minimal Steps

A. Example: synchronisation and message passing.

B. Example: parameter passing and run-time type-
checking.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
25 hierarchy.slides

Relation to Courtois Hierarchy

- Lower = faster, more frequent

- Higher = slower, less frequent

- Exceptions

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
26 hierarchy.slides

The ONE, FIXED, VARIABLE Conflict

The super system allows things to be created and
deleted.

A subset eliminates those programs but allows a
fixed number of things.

A smaller subset has only one of those things.

 McMaster University

7/9/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
27 hierarchy.slides

Hierarchy as the Solution to the “uses” Dilemma

Compromise between desire to avoid duplication
and independence.

