
 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 1/28

Thinking about Large Programs

What is a “large program”?
•One too large to be written by one person in a few days.

Why are large programs different?
•There are many tiny details.
•It is difficult, often impossible to keep all of those details
in mind all the time.

•When there are several programmers, nobody is familiar
with everything in the program.

•If the program is written over a period of more than a few
days, people forget the details of what they have done.

•Errors in one part often affect other parts.

How should we respond to these problems?
•We organise programs intomodules.
•Production of a module is a piece of work for a program-
mer or a group of programmers.

•Modules can be subdivided into smaller modules.
•Even individuals organise their work in modules.

Is modularisation an engineering issue?
•Some treat it as management: assigning people work.
•There are technical issues: issues independent of the peo-
ple available.

•Dividing a program into modules is the subject of this
lecture.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 2/28

What is a module?

Historically modules were simply a unit of
measure,e.g. 3.27 square meters.

Manufacturers learned to build parts that were
one unit large.

The word now means the parts themselves.

Modules are usually relatively self-contained
systems that are combined to make a larger
system.

Design is often the assembly of many previously
designed modules.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 3/28

The constraints on modules

If the modules are hardware, how you put them
together is obvious; there are well-known
physical constraints. There is a well-identified
time at which modules are assembled to get the
larger system.

If the modules are software, there are no obvious
constraints. Theoretically software modules can
be arbitrarily large, their interfaces arbitrarily
complex.

During software development there are several
different times at which parts are combined to
form a whole.

During software development there are several
different ways of putting parts together to get the
whole.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 4/28

Modules of software--when are parts put together?

A. While writing software
•parts: work assignments for programmer(s)
•when: files containing programs combined
before compilation or execution.

B. When “linking” object programs.
•parts: separately assembled (compiled)
programs with “relative” addressing

•when: addresses are inserted to provide links
before execution.

C. When running a program in limited memory.
•parts: memory loads data and programs that
refer to each other by memory addresses

•when: while the program is running.

The word “module” is used in programming
literature for all three of these!

The ambiguity in the word leads to confusion.

In this course, we talk only about the first
meaning.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 5/28

The constraints on the three structures

Write time Constraints:
• Intellectual coherence for programmer
• Ability to understand, verify
• Ease of change

Assembly time constraints:
• duplicate names
• time to re-assemble

Run time constraints
• size of memory
• frequency of reference to items outside segment
• time to load/unload memory

The three sets of constraints are independent and
they have only the word “module” in common.
These are three different design concepts.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 6/28

Myth of o ver-modularisation in TSS/360

TSS/360 was a major effort by IBM to build a
time sharing system in the 60’s.

It was very very slow.

A well known IBM researcher attributed this to
over-modularisation - the modules were too
small and there were too many.

Previous popular wisdom -modules should be as
small as possible

Researcher, “Too many small modules led to
memory thrashing”.

Belief in many small modules was based on
work assignment interpretation of that word.

Implementation used memory management
interpretation.

Two meanings of module were confused.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 7/28

The effects of confusing these meanings

Inefficiency results from forcing coincidence.

Write time modules may not be good memory
load modules.

Write time modules need not be compiled
separately. One may use macro substitution.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 8/28

The three (or more) meanings m ust not
be confused

In this lecture, modules arealways write-time or
change-time entities. We want them to have the
following properties:

•They can be designed and changed independently.
•They can be divided into modules.

When do we stop subdividing modules?
•When they are so small that it is easier to write a new one
than to change it.

•When the cost of specifying the interface exceeds any fu-
ture benefit from having smaller modules.

The concept of “module” as a work assignment
is only a definition. We need guidelines for
designing the module structure of large
programs.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 9/28

The KWIC INDEX Example

Conventional structure

(1) Input Module

INPUT INTERFACE: Input format, marker conventions
OUTPUT INTERFACE: Memory format

(2) Circular Shift Module
INPUT INTERFACE: Memory format
OUTPUT INTERFACE: Memory format, perhaps the
same

(3) Alphabetising Module
INPUT INTERFACE: Memory format
OUTPUT INTERFACE: Memory format

(4) Output Module
INPUT INTERFACE: Memory format
OUTPUT INTERFACE: Paper format, conventions, etc.

(5) Master Control Module
INTERFACE: names of the program to be invoked

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 10/28

The KWIC INDEX Example

Which programdesigndecisionsaremostlikely
to change?

1. Input format

2. Memory formats

3. The decision to sort all the output before
starting to print results.

4. Output formats

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 11/28

KWIC INDEX Example: An Alternative Structure

Line Holder Module

•A special purpose memory to hold lines of KWIC index

It consists of the following programs:

GET_CHAR (lineno, wordno, charno)

SET_CHAR (lineno, wordno, charno, char)

CHARS (lineno, wordno)

WORDS (lineno)

DELETE_LINE (lineno)

DELETE_WORD (lineno, wordno)

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 12/28

The KWIC INDEX Example: Alternative Structure

Input Module

• reads from input medium;
• calls line-holder programs to store in memory

Interface program: “INPUT”

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 13/28

The KWIC INDEX Example: Alternative Structure

Circular Shift Module
•Creates a “virtual” list of circular shifts.
•Uses line holder programs to get data from memory.
•It may, may not, create an actual table.

Interface programs:
(1) “CS_SETUP”
(2) “CS_CHAR (lineno, wordno, charno)”

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 14/28

The KWIC INDEX Example: Alternative Structure

Alphabetiser Module

•Does the actual sorting of the circular shifts.
•May or may not produce a new list.
•If it doesn’t, it makes a directory.

Interface programs:
ALPH
ITH (lineno)

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 15/28

The KWIC INDEX Example: Alternative Structure

Output Module
•Does the actual printing.
•Calls ITH and circular shift programs.

Interface program:
OUTPUT

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 16/28

The KWIC INDEX Example: Alternative Structure

Master Control Module
•Links all the modules together to do the job.
•Is the main program, but very simple.
•Calls INPUT, CS_SETUP, ALPH, and OUTPUT.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 17/28

The KWIC INDEX Example: Alternative Structure:

What happened?

Not necessarily getting a really different
program.

Different way of cutting up a program--so that
likely changes are confined to one person's work
- one module.

System organised into set of modules based on
explicit consideration of what needs to be
changed.

Not necessarily better algorithms or data structures.

Simplifies interfaces
• information hiding, abstraction
• descriptions may be less familiar

In the original design, we could have used
function tables to describe the interface.

In the new design, we can’t because the data
structure is internal, not external.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 18/28

Terminology

Information-hidingmodules

Identify the design decisions that are likely to
change.

Have a module for each design decision that we
consider very likely to change.

Requires experience and judgement. Experience tells
us what is likely to change.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 19/28

Terminology

Thesecret of a module

The design decision that might change--only the
implementor needs to know what decision was
made.

Line holder
• how lines are represented in memory

Input module
• input format

Circular shift module
• how circular shifts are represented

Alphabetiser
• sorting algorithm
• when the alphabetisation is done

Output
• output format

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 20/28

Terminology

Module Structure

The structure of a system is described by describing
parts and their connections.

Connections: between modules are assumptions that
they make about each other (interface).

Parts: work assignments

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 21/28

Design Err ors in the Con ventional Design

Flowchart boxes become modules.

There were unnecessary “connections”.
• All of the modules contained code that is
dependent on data structure design decisions.

• The whole program was written on the
assumption of a given input format.

• The whole program was written on the
assumption that printing would be done at the
end.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 22/28

Frequenc y of Switc hing fr om Module to Module

Steps-in-processing approach
•There are few transfers from module to module.
•The cost of the transfer is not significant.

Information-hiding approach
•There are many separate programs called from other
modules.

•There is a high frequency of switching
•The cost of switching can be very significant.

Module access programs need not be
subroutines.

The usual space-time tradeoffs apply.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 23/28

Do not confuse run-time with write time!

We want to hide information about the design at
write-time, not minimise data exchange at run-
time.

Some designers try to reduce the information
passed between modules at run-time.

This may actually increase the amount of
information needed by the writers.

You can save run-time information storage and
processing by making assumptions at write-time.

This will speed up your program and save
memory, but may make it much harder to
change.

Remember, the module structure is a write-time
structure and may disappear with final assembly.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 24/28

Design Pr ocedure f or Very Lar ge Programs

A. Identify the secrets, separate as far as
practical.

B. Design an information hiding interface for
each:

• Implementations of access programs are based
on the secrets.

• The interface won't change if the secrets do.

C. Specify all the interfacesprecisely.

D. Implement independently
• One module may use access programs from
another.

• Programs from one module cannot use data
structures or internal programs from another.

E. Decompose the larger modules - go to A.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 25/28

What is the relation between inf ormation hiding
and abstract data types

Data Abstraction is a special case of information
hiding. Algorithms can be hidden as well.

Data Types allow many copies of the hidden
structure.

• Each variable has one copy of the hidden data
structure.

• The module is the programs.
• The data structure copies are the variables.

What is the relationbetweeninformationhiding
and object-oriented approaches.

Modules are the code that produces objects.

Not dependent on message passing.

Class-inheritance not there.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 26/28

Viewed as a famil y development

We are designing not one program, but a
program family.

Decisions shared by all members of a family
should be made early. Decisions likely to change
should be postponed.

Early decisions are harder to change than later
ones.

Structure decisions are early and hard to change.

Interfaces: Should embody decisions less likely
to change.

Implementation: Should embody decisions most
likely to change.

The more likely a decision is to change, the more
you restrict knowledge of it. Where possible
decisions that are likely to be reversed should be
made late in the design process.

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 27/28

Example Linked Lists

Consider the following data structure:

This allows easy insertion and deletion.

Consider the following Alternative.

The link at each element is the sum of the
forward and backward links.

Each alternative has advantages and
disadvantages.The decision is likely to change.

11 ● 14 ● y ●

● x ● 7 ● 11

“A” “B” “C”

Location 7 Location 11 Location 14

11 + x

“A”

Location 7 Location 11 Location 14

21

“B”

11 + y

“C”

 McMaster University

October 29, 1999

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

infohide.slides 28/28

Example: Linked List, using inf ormation hiding

(1) Make the job of maintaining the list a module.

(2) Provide the following interface programs.

•Current: returns the value of the current element.
•Moveforward: current element becomes next on list.
•Movebackward: current becomes previous on list.
•Atstart?: returnstrue if you cannot move backward.
•Atend?: returnstrue if you cannot move forward.
•Insertafter(x): insert a new element in the list after cur-
rent; the value of the new element will be x.

•Insertbefore(x): insert a new element in the list before
current; the value of the new element will be x.

•Remove: Deletes the current element from the list.
•Alter(x) Changes the value of the current element to x.

(3) Write the programs that use this list using only the interface
programs.

•Your programs can do everything that they could do if
they used the link structure directly.

•Your programs will be easier to understand and change.
•Your programs are more likely to be correct.

