= McMaster University = = McMaster University =

Thinking about Large Programs What is a module?
What is a “lage program”? Historically modules were simply a unit of
*One too large to be written by one person in a few days. measuree.g.3.27 square meters.
Why are lage programs diérent?
«There are many tiny details. Manufacturers learned to build parts that were
oIt is difficult, often impossible to keep all of those details one unit Iarge.
in mind all the time.
*When there are several programmers, nobody is familiar The word now meanthe parts themselves.
with everything in the program.
«If the program is written over a period of more than a few Modules are usua”y relatively self-contained
days, people forget the details of what they have done. systems that are combined to make a larger
*Errors in one part often affect other parts. system
How should we respond to these problems?
*We organise programs intoodules. Design is often the assembly of many previously

*Production of a module is a piece of work for a program
mer or a group of programmers.
*Modules can be subdivided into smaller modules.
*Even individuals organise their work in modules.
Is modularisation an engineering issue?
*Some treat it as management: assigning people work.
*There are technical issues: issues independent of the p

designed modules.

9%
?

ple available.
Dividing a program into modules is the subject of thig
lecture.
Communications Research Laboratory Communications Research Laboratory
Software Engineering Research Group Software Engineering Research Group
“connecting theory with practice” “connecting theory with practice”

infohide.slides 1/28 October 29, 1999 infohide.slides 2/28 October 29, 1999

= McMaster University =

The constraints on modules

If the modules are hardware, how you put ther
together is obvious; there are well-knowr
physical constraints. There is a well-identifie(
time at which modules are assembled to get tl
larger system.

If the modules are software, there are no obviol
constraints. Theoretically software modules ca
be arbitrarily large, their interfaces arbitrarily
complex.

During software development there are sever
different times at which parts are combined t
form a whole.

During software development there are sever
different ways of putting parts together to get th
whole.

US
N

al
0

al

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

infohide.slides 3/28

October 29, 1999

= McMaster University =

Modules of software--when are parts put together?

A. While writing software
* parts work assignments for programmer(s)
when files containing programs combined
before compilation or execution.

B. When “linking” object programs.
eparts separately assembled
programs with “relative” addressing
ewhen addresses are inserted to provide link
before execution.

(compiled

refer to each other by memory addresses
«when while the program is running.

The word “module” is used in programming
literature for all three of these!

The ambiguity in the word leads to confusion.

In this course, we talk only about the firs
meaning.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

infohide.slides

4/28 October 29, 1999

C. When running a program in limited memory.
eparts memory loads data and programs that

(7]

[

= McMaster University =

The constraints on the three structures

Write time Constraints:
* Intellectual coherence for programmer

* Ability to understand, verify
« Ease of change

Assembly time constraints:
* duplicate names

etime to re-assemble

Run time constraints
*size of memory

« frequency of reference to items outside segment
«time to load/unload memory

The three sets of constraints are independent and
they have only the word “module” in common.
These are three different design concepts.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

infohide.slides 5/28 October 29, 1999

= McMaster University =

Myth of o ver-modularisation in TSS/360

TSS/360 was a major effort by IBM to build a
time sharing system in the 60’s.

It was very very slow.

A well known IBM researcher attributed this to
over-modularisation - the modules were too
small and there were too many.

Previous popular wisdom -modules should be as
small as possible

Researcher, “Too many small modules led to
memory thrashing”.

Belief in many small modules was based on
work assignment interpretation of that word.

Implementation used memory management
interpretation.

Two meanings of module were confused.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

infohide.slides 6/28 October 29, 1999

= McMaster University = = McMaster University =

The effects of confusing these meanings The three (or more) meanings m _ust not
be confused
Inefficiency results from forcing coincidence. In this lecture, modules asdways write-time or
change-time entities. We want them to have the
Write time modules may not be good memory following properties:
load modules. *They can be designed and changed independently.

*They can be divided into modules.

| -

Write time modules need not be compilec

separately. One may use macro substitution. When do we stop subdding modules?
*When they are so small that it is easier to write a new one

than to change it.
*When the cost of specifying the interface exceeds any fu-
ture benefit from having smaller modules.

The concept of “module” as a work assignment
Is only a definition. We need guidelines for
designing the module structure of large

v

programs.

Communications Research Laboratory Communications Research Laboratory

Software Engineering Research Group Software Engineering Research Group
“connecting theory with practice” “connecting theory with practice”

infohide.slides 7128 October 29, 1999 infohide.slides 8/28 October 29, 1999

= McMaster University = = McMaster University =

The KWIC INDEX Example The KWIC INDEX Example
Corventional structure Which programdesigndecisionsaremostlik ely
to change?
(1) Input Module
_ 1. Input format
INPUT INTERFACE: Input format, marker conventions
OUTPUT INTERFACE: Memory format 2 Memory formats
(2) Circular Shift Module 3. The decision to sort all the output before
INPUT INTERFACE: Memory format Starting to print results.
OUTPUT INTERFACE: Memory format, perhaps the
same 4. Output formats

(3) Alphabetising Module

INPUT INTERFACE: Memory format
OUTPUT INTERFACE: Memory format

(4) Output Module

INPUT INTERFACE: Memory format
OUTPUT INTERFACE: Paper format, conventions, etc.

(5) Master Control Module
INTERFACE: names of the program to be invoked

Communications Research Laboratory Communications Research Laboratory
Software Engineering Research Group Software Engineering Research Group
“connecting theory with practice” “connecting theory with practice”

infohide.slides 9/28 October 29, 1999 infohide.slides 10/28 October 29, 1999

= McMaster University = = McMaster University =

KWIC INDEX Example: An Alternative Structure The KWIC INDEX Example: Alternative Structure

Line Holder Module

Input Module

*A special purpose memory to hold lines of KWIC index
*reads from input medium;
It consists of the follwing programs: «calls line-holder program$o store in memory

GET_CHAR (lineno, wordno, charno) Interface program: “INPUT”
SET_CHAR (lineno, wordno, charno, char)
CHARS (lineno, wordno)

WORDS (lineno)

DELETE_LINE (lineno)

DELETE_WORD (lineno, wordno)

Communications Research Laboratory Communications Research Laboratory
Software Engineering Research Group Software Engineering Research Group
“connecting theory with practice” “connecting theory with practice”

infohide.slides 11/28 October 29, 1999 infohide.slides 12/28 October 29, 1999

= McMaster University = = McMaster University =

The KWIC INDEX Example: Alternative Structure The KWIC INDEX Example: Alternative Structure
Circular Shift Module _
«Creates a “virtual” list of circular shifts. Alphabetiser Module
*Uses line holder programs to get data from memory.
It may, may not, create an actual table. *Does the actual Sorting of the circular shifts.
*May or may not produce a new list.
Interface programs: oIf it doesn’t, it makes a directory.
(1) “CS_SETUP”
(2) “CS_CHAR (lineno, wordno, charno)” Interface programs:
- ALPH
ITH (lineno)
Communications Research Laboratory Communications Research Laboratory
Software Engineering Research Group Software Engineering Research Group
“connecting theory with practice”

“connecting theory with practice”

infohide.slides 13/28 October 29, 1999 infohide.slides 14/28 October 29, 1999

= McMaster University =

The KWIC INDEX Example: Alternative Structure

Output Module
*Does the actual printing.

*Calls ITH and circular shift programs.

Interface program:
OUTPUT

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

infohide.slides 15/28 October 29, 1999

= McMaster University =

The KWIC INDEX Example: Alternative Structure

Master Control Module
+Links all the modules together to do the job.
*Is the main program, but very simple.
*Calls INPUT, CS_SETUP, ALPH, and OUTPUT.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

infohide.slides 16/28 October 29, 1999

= McMaster University = = McMaster University =

The KWIC INDEX Example: Alternative Structure: Terminoloqgy
What happened?

Not necessarily getting a really different Information-hidingmodules

program. Identify the design decisions that are likely tg

Different way of cutting up a program--so that change.

likely changes are confined to one person's work

_ one module. Have a module for each design decision that we

consider very likely to change.

System organised into set of modules based on : : , . _
explicit consideration of what needs to be 55 %ﬂ;ﬁsisem(peﬁﬁgccigﬂgégdgemem' Experience te

changed.
Not necessarily better algorithms or data structures.

Simplifies interfaces
information hiding, abstraction

* descriptions may be less familiar

In the original design, we could have used
function tables to describe the interface.

In the new design, we can't because the data
structure is internal, not external.

Communications Research Laboratory Communications Research Laboratory
Software Engineering Research Group Software Engineering Research Group
“connecting theory with practice” “connecting theory with practice”

infohide.slides 17/28 October 29, 1999 infohide.slides 18/28 October 29, 1999

= McMaster University = = McMaster University =

Terminology Terminology
Thesecet of a module Module Structure
The design decision that might change--only the The structure of a system is described by describing
implementor needs to know what decision was parts and their connections.

made.
Connections: between modules are assumptions that

Line holder they make about each other (interface).

*how lines are represented in memory Parts: work assignments

Input module
*input format

Circular shift module
* how circular shifts are represented

Alphabetiser
* sorting algorithm
*when the alphabetisation is done

Output
e output format

Communications Research Laboratory Communications Research Laboratory
Software Engineering Research Group Software Engineering Research Group
“connecting theory with practice” “connecting theory with practice”

infohide.slides 19/28 October 29, 1999 infohide.slides 20/28 October 29, 1999

= McMaster University =

Design Err ors in the Con ventional Design

Flowchart boxes become modules.

There were unnecessary “connections”.
*All of the modules contained code that is
dependent on data structure design decisions.

*The whole program was written on the
assumption of a given input format.

*The whole program was written on the
assumption that printing would be done at the
end.

infohide.slides 21/28

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

October 29, 1999

= McMaster University =

Frequenc y of Switc hing fr om Module to Module

Steps-in-processing approach

*There are few transfers from module to module.
*The cost of the transfer is not significant.

Information-hiding approach

*There are many separate programs called from oth
modules.

*There is a high frequency of switching

*The cost of switching can be very significant.

Module_ access
subroutines.

programs need not Db

The usual space-time tradeoffs apply.

infohide.slides 22/28

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

October 29, 1999

= McMaster University =

Do not confuse run-time with write time!

We want to hide information about the design at
write-time, not minimise data exchange at run-
time.

Some designers try to reduce the information
passed between modules at run-time.

This may actually increase the amount of
information needed by the writers.

You can save run-time information storage and
processing by making assumptions at write-time.

This will speed up your program and sav
memory, but may make it much harder t
change.

Remember, the module structure is a write-time

structure and may disappear with final assembly.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

infohide.slides 23/28 October 29, 1999

= McMaster University =

Design Pr ocedure f or Very Large Programs

practical.

each:

on the secrets.

C. Specify all the interfacqmecisely.

D. Implement independently

another.

A. ldentify the secrets, separate as far

B. Design an information hiding interface for

* The interface won't change if the secrets do.

*One module may use access programs from

*Programs from one module cannot use data
structures or internal programs from another.

E. Decompose the larger modules - go to A.

as

e Implementations of access programs are based

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

infohide.slides 24/28

October 29, 1999

= McMaster University = = McMaster University =

What is the relation between inf _ormation hiding Viewed as a famil y development
and abstract data types

o _ _ _ We are designing not one program, but a
Data Abstraction is a special case of information program family.

hiding. Algorithms can be hidden as well.
Decisions shared by all members of a famil

~

Data Types allow many copies of the hidden should be made early. Decisions likely to change
structure. should be postponed.

'Slztﬁjcgu\;gr'able has one copy of the hidden data Early decisions are harder to change than later

L ones.

* The module is the programs.

* The data structure copies are the variables. Structure decisions are early and hard to change.
Whatis the relationbetweeninformationhiding Interfaces: Should embody decisions less likely
and object-oriented approaches. to change.

Modules are the code that produces objects. Implementation: Should embody decisions most

likely to change.
Not dependent on message passing.
The more likely a decision is to change, the more
Class-inheritance not there. you restrict knowledge of it. Where possible
decisions that are likely to be reversed should be
made late in the design process.

Communications Research Laboratory Communications Research Laboratory
Software Engineering Research Group Software Engineering Research Group
“connecting theory with practice” “connecting theory with practice”

infohide.slides 25/28 October 29, 1999 infohide.slides 26/28 October 29, 1999

= McMaster University =

Example Linked Lists

Consider the follwing data structure:

11 e > 14 e > y &———>
-0 X o 7 e 11
“A” “B” “Cc”
Location 7 Location 11 Location 14

This allows easy insertion and deletion.

Consider the follving Alternatie.

11+ X 21 11+Yy
HA” HBI! HCH
Location 7 Location 11 Location 14

The link at each element is the sum of the
forward and backward links.

Each alternative has advantages and
disadvantages.The decision is likely to change

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

infohide.slides 27/28 October 29, 1999

= McMaster University =

Example: Linked List, using inf ormation hiding

(1) Make the job of maintaining the list a module.

(2) Provide the following interface programs.
*Current: returns the value of the current element.
*Moveforward: current element becomes next on list.
*Movebackward: current becomes previous on list.
Atstart?: returnsrue if you cannot move backward.
*Atend?: returnsrue if you cannot move forward.
Insertafter(x): insert a new element in the list after cur
rent; the value of the new element will be x.
Insertbefore(x): insert a new element in the list befor
current; the value of the new element will be x.
*Remove: Deletes the current element from the list.
Alter(x) Changes the value of the current element to x.

D

(3) Write the programs that use this list using only the interface
programs.

*Your programs can do everything that they could do if
they used the link structure directly.
*Your programs will be easier to understand and change.
*Your programs are more likely to be correct.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

infohide.slides 28/28 October 29, 1999

