
 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

1 inspectB.slides

Software Inspections W e Can Trust

David Lorge Parnas, P.Eng.
NSERC/Bell Industrial Research Chair in Software Engineering

Director of the Software Engineering Programme
Department Of Computing And Software (CAS)

Faculty of Engineering, McMaster University
Hamilton ON Canada L8S 4K1

Software is devilishly hard to inspect. Serious errors can hide
for years. Consequently, many are hesitant to employ software in
safety-critical applications and all companies are finding
correcting and improving software to be an increasingly
burdensome cost.

This talk describes a procedure for inspecting software that
consistently finds subtle errors in software that is believed to be
correct. The procedure is based on four key principles:

• All software reviewers actively use the code.
• Reviewers exploit the hierarchical structure of the code rather

than proceeding sequentially through the code.
• Reviewers focus on small sections of code, producing precise

summaries that are used when inspecting other sections. The
summaries provide the “links” between the sections.

• Reviewers proceed systematically so that no case, and no section
of the program, gets overlooked.

During the procedure, the inspectors produce and review
mathematical documentation. The mathematics allows them to
check for complete coverage; the notation allows the work to
proceed in small systematic steps.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

2 inspectB.slides

Responsibilities of (Software) Engineer s

• To understand the properties of their products
thoroughly.

• To follow established rules of good practice
when designing and building products.

• To apply theory where it has been demonstrated
to lead to better, or safer, products.

Engineering is Not Mana gement

The art of system management is the ability to get
things built without knowing exactly what they are.

The engineer is expected to thoroughly understand
the properties of the product.

Software projects are hard to manage - especially if
they are badly designed, but...

Unless we have good Engineers, the best managers
will not be able to successfully manage these
projects.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

3 inspectB.slides

Why is Software so often a Pr oblem?

Developersconsistentlyunderestimate the difficulty
of building software for long-term use.

Theywrite software rather thandesign it.

They do not:
• systematically, identify and record requirements,
• hold reviews of the requirements document,
• explicitly design, document and review software

structure,
• carefully inspect all designs and programs.

These steps are standard practice for all engineering
products other than software.

The steps are not taken for software because,
• “Software is easy!”
• “The code is self-documenting!”
• “Software isjust a set of instructions.”
• “Anyone who knows the language can program.”

Famous last words!

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

4 inspectB.slides

Why Don’t P eople Appl y Engineering
Discipline to Software?

(1) Some don’t have an engineering education.

(2) Some don’t think it’s necessary.

(3) Some don’t know how to do it.

Why don’t we demandthat software peoplehave
appropriate qualifications?

• Experience shows that it is necessary.
• We license hairdressers don’t we.

Why aren’t software designers required to be
Engineers?

• They should understand more than the code.
• They must be sure their product is fit for use.

Why do we continueto think of them as scientists
and to educate them accordingly?

• Inertia?

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

5 inspectB.slides

Why Don’t Designer s Appl y Mathematics,
and “Theor y” to Software Pr oducts?

The last 30 years have seen great advances in our
understanding of software science.

Programs written by most engineers have not taken
advantage of this theory.

Programs written by most other programmers do not
reflect this theory.

• Many don’t know the theory.

• Those who know it don’t know how to apply it

• Much of it is difficult to apply, perhaps even not
applicable.
• Deals with impractical languages
• Deals with unbounded memory size
• Uses unnecessarily difficult notation
• Designed for the wrong purpose

There is a need to connect theory to practice.

Let’s start with software inspections.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

6 inspectB.slides

When is Software Critical?

Critical is not necessarily “safety critical”

Other types of critical programs:

• Mass distributed programs in warranty situations

• Critical kernels in many systems

• Financial Systems

• Security (Privacy, Data Protection) programs

The common property of all of these examples is
that the cost of a failure is high.

If you value your reputation, your work may be
critical.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

7 inspectB.slides

The Critical-Software T ripod

(1) Precise, well organised, mathematical
documentation with systematic review

(2) Extensive Testing

• Systematic Testing-quick discovery of gross errors

• Random Testing -discovery of shared oversights and
reliability assessment

(3) Qualified People and Approved Processes

The Three Legs are complementary

The three legs are all needed.

The stool falls over if any leg is forgotten.

The third leg is the shortest.

It’s the shortest leg that we should worry about.

Today we discuss only leg (1).

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

8 inspectB.slides

Why Conventional Re views are Ineff ective

(1) The reviewers are swamped with information.

(2) Most reviewers are not familiar with the
product design goals.

(3) There are no clear individual responsibilities.

(4) Reviewers can avoid potential embarrassment
by saying nothing.

(5) The review is conducted as a large meeting
where detailed discussions are difficult.

(6) Presence of managers silences criticism.

(7) Presence of uninformed reviewers may turn the
review into a tutorial.

(8) Specialists are asked general questions.

(9) Generalists are expected to know specifics.

(10) The review procedure reviews code without
respect to structure. (n lines per hour)

(11) Unstated assumptions are not questioned.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

9 inspectB.slides

Effective Re views are Active Re views

A dilemma:
• Errors in programs and design documents should be

foundbefore the documents/systems are used.
• Errors in programs and documents are usually found

when the documents are used.

Another dilemma:
• Everyone’s work requires review!
• It’s easier to say “OK” than to find subtle errors!
• Reviewer’s approval is not reviewed.

One more dilemma:
• No individual can review all aspects of a design.
• When working in a group, people tend to relax in the

knowledge that others are also working the problem.

Solutions:
• Make the reviewers use the documents.
• Make the reviewers document their analysis.
• Have specialised reviews. Ask the reviewer about

things that they know.
• Make the reviewers provide specifics - not just a bit.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

10 inspectB.slides

Previous W ork on Inspections

Best known approach Fagan - 1976.

Many followers - new book by Gilb.

Explicitly focus on themanagement aspects.

• Who should be there?
• What are the roles of the participants?
• How long is a meeting?
• How fast do you work?
• Forms for reporting errors?

Read the code in sequence and paraphrase.

Paraphrases are informal.

Most observers find these more effective than
conventional reviews or walkthroughs, but...

... can we do better?

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

11 inspectB.slides

Parnas/NRL/AECB/AECL/Ontario Hydr o

Focus on theengineering side.

Depend on hierarchical decomposition rather than
sequential reading.

Use mathematical notations to provide precise
descriptions rather than informal paraphrases.

Produce usefulprecise documentation as a side
effect.

Proceed much more quickly if the documentation
was produced by the developers.

Insures that cases and variables are not overlooked.

Applies simple mathematics to check for
completeness aspects.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

12 inspectB.slides

Active Re view of Design Documents

Base the review process on the nature of the
document.

(1) Begin by identifying desired properties.

(2) Prepare questionnaires for the reviewers. Ask
them questions that:

• make them use the document.
• make them demonstrate that the desired properties

are present.
• ask for sources of information to support the answers

to other questions.

For example:
• Ask reviewers to identify the domain of the program
• Ask reviewers to identify “error” cases.
• Ask reviewers to explain why no other error cases are

possible.
• Ask reviewers to explain why the behaviour required

for each case is the desired behaviour.

For more information read [1].

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

13 inspectB.slides

Inspecting Pr ograms

It is the code that “hits the road”.

Getting the requirements right, the structure right,
the interfaces right, the documentation right, etc. are
all important butwe have to check the code.

The same review principles apply, viz:
• Make the reviewers use the material they review.
• Make the reviewers answer questions.
• Ask the reviewer about things that they know.
• Make the reviewers provide specifics.

We compare completed programs with previously
reviewed specifications.

We ask some reviewers to produce precise
descriptions.

We ask other reviewers to show that the descriptions
match the specifications.

It is hard work but it produces results.
• We get good documentation for future use.
• We find errors in the best industrial code - programs

that were considered correct.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

14 inspectB.slides

Our Code Inspection Pr ocess

(1) Prepare a precise specification of what the code
should do - a program function table.

(2) Decompose the program into small parts
appropriate for the “display approach” [2].

(3) Produce the specifications required for the
“display approach”.

(4) Compare the “top level” display description with
the requirement specification.

Observations:

• You can’t inspect without precise requirements.

• Step (2) would already have been done if you use
the display method for documentation.

• Step (3) is truly an active design review

• All reviewer work is itself reviewable.

• If you did not already have it, the by-product is
thorough documentation.

• It’s a bunch of small steps and very systematic.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

15 inspectB.slides

Descriptions vs. Specifications

An actualdescriptionis a statement of someactual
attributes of a product, or set of products. ❑

A specification is a statement of all properties
required of a product, or a set of products. ❑

In the sequel, “description”, without modifier, means
“actual description”.

The following are implications of these definitions:

• A description may include attributes that are not
required.

• A specification may include attributes that a (faulty)
product does not possess.

• The statement that a product satisfies a given
specification may constitute a description.

The third fact results in much confusion. A useful
distinction has been lost.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

16 inspectB.slides

Descriptions vs. Specifications

Any list of attributes may be interpreted aseither a
description or a specification.

Example:

“A volume of more than 1 cubic meter”

This could be either an observation about a specific
box or, a statement of the requirements for a box that
is about to be purchased.

A specification may offer a choice of attributes; a
description describes the actual attributes, but need
not describe the product completely.

Sometimes one may use one’s knowledge of the
world to guess whether a statement is a description
or a specification.

Example:

“Milk, badly spoiled”

Guessing is not reliable. We need to explicitly
label specificationsand descriptions so that the
intended use is clear.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

17 inspectB.slides

Do We Need New Semantics Theories For
Programming?

Not for the practical software engineering problems
that I see.

I can find 30 year old theory that works for the
problems that I will describe today.

Semantic theory has failed to describe real
languages, but (in my opinion) the fault lies with the
languages.

We do need improvements in:

• the notation used to describe actual programs
• the ability to describe behaviour in terms of the

values of observable variables - nothing else.
• convenient ways to deal with all aspects of

termination including non-deterministic non-
termination.

What follows is mathematically equivalent to some
very old ideas, but has some practical advantages.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

18 inspectB.slides

A Mathematical Interlude - LD-relations.

A binary relation R on a given set U is a set of
ordered pairs with both elements from U,
i.e. R⊆ U × U.

The set U is called theUniverse of R.

The set of pairs R can be described by its
characteristic predicate, R(p,q),
i.e. R = {(p,q): U× U | R(p,q)}.

The domainof R is denoted Dom(R) and is {p |∃q
[R(p,q)]}.

Therange of R is denoted Range(R) and is
{q | ∃p [R(p,q)]}.

Below, “relation” means “binary relation”.

A limited-domain relation(LD-relation) on a set, U,
is a pair, L = (RL, CL) where:
RL, therelational componentof L, is a relation on U,
i.e. RL ⊆ U × U, and
CL, the competence setof L, is a subset of the
domain of RL, i.e. CL ⊆ Dom(RL).

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

19 inspectB.slides

Using LD-Relations as Bef ore/After
Behavioural Descriptions (1)

Let P be a program, let S be a set of states, and let LP
= (RP, CP) be an LD-relation on S such that
(x,y) ∈ RP if and only if <x,…,y> is a possible
terminating execution of P, and
x ∈ CP if and only if P is guaranteed to terminate if it
is started in state s.1

Lp is called theLD-relation ofP

By convention, if CP is not given, it is,
(by default), Dom(RP).

With this convention, our approach is upwards
compatible with the “cleanroom” approach for
dealing with deterministic programs.

1 Please note that CP is not the same as the
precondition used in VDM [4]. SP is the set of states
in which the termination of P is certain.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

20 inspectB.slides

Using LD-Relations as Bef ore/After
Behavioural Descriptions (2)

The following follow from the definitions:
• If P starts in x and x∈ CP, P always terminates; if

(x, y) ∈ RP, P may terminate in y.

• If P starts in x, and x∈ (Dom(RP) − CP), the
termination of P is non-deterministic; in this case,
if (x, y) ∈ RP, when P is started in x, it may
terminate in y or may not terminate.

• If P starts in x, and x∉ Dom(RP), then P will never
terminate.

By these conventions we are able to provide
complete before/after descriptions ofany program
but retain a simpler representation to use for those
cases that arise most often.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

21 inspectB.slides

Specifying Pr ograms (1)

Specifications mayallow behaviour not actually
exhibited by a satisfactory program.

We can also use LD-relations as before/after
specifications. To understand the meaning of a
specification, you must understand what “satisfies”
means.

Let Lp = (RP, CP) be the description of program P.
Let S, called aspecification, be a set of
LD-relations on the same universe and
LS = (RS, CS) be an element of S.
We say that

(1) Psatisfies an LD-relationLS, if and only if
 CS ⊆ CP and RP ⊆ RS, and

(2) Psatisfies a specification,S, if and only if
 Lp satisfies at least one element of S.

Often, S has only one element. If S = {LS} is a
specification, then we can also call LS a specification.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

22 inspectB.slides

Specifying Pr ograms (2)

The following follow from the definitions:
• A program will satisfy it’s own description as well as infinitely

many other LD-relations.

• An acceptable program mustnot terminate when started in states
outside Dom(RS).

• An acceptable program must terminate when started in states in CS
(CS ⊆ Dom(RP)).

• An acceptable program may only terminate in states that are in
Range(RS).

• A deterministic program can satisfy a specification that would also
be satisfied by a non-deterministic program.

Note the following differences between the
description and the specification of a program.
• There is only one LD-relation describing a program, but that

program will satisfy many distinct specifications described by
different LD-relations.

• An acceptable program need not exhibit all of the behaviours
allowed by RS (RP ⊆ RS).

• An acceptable program may be certain to terminate in states outside
CS. (CS ⊆ CP).

The intended use of each LD-relation (specification
or description)must be stated explicitly!

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

23 inspectB.slides

Tabular Descriptions and Specifications

The above is one of many kinds of tables!

Simple tables like thisunderstate the advantage.

These have proven “practitioner appeal”

Specification for a search program
(∃ i, B[i] =x) (∀ i, ((1 ≤ i ≤ N) ⇒

B[i] ≠ x))

j’ | B[j’] = x true

present’= true false ∧
NC(x, B)

Description of a search program
(∃ i, B[i] =x) (∀ i, ((1 ≤ i ≤ N) ⇒

B[i] ≠ x))

j’ | (B[j’] = x) ∧
(∀ i, ((j’ < i ≤ N)

⇒ B[i] ≠ x))

true

present’= true false ∧
NC(x, B)

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

24 inspectB.slides

A Simple Example

(integer array H[1:N];

 (integer c; integer n; n⇐ 1;
it (n ≤ Ν →
 (
(integer u; integer l; boolean p; l ⇐ 1; c⇐ 0;
it (u ⇐ l + n -1;
(u ≤ N → (

(integer i; i ⇐ 0; p ⇐ true;
it (i < (u - l +1)÷2 →

(A[l+i] = A[u-i] → (i ⇐ i + 1;☛)
| A[l+i] ≠ A[u-i] → (p ⇐ false; ●))

| (u - l +1)÷2 ≤ i→●)
ti)
;
 (¬p → skip | p→ c ⇐ c+1); l ⇐ l+1; ☛)
| u > N → ●))
ti)
;
 H[n] ⇐ c; n ⇐ n +1;☛)
 | n > N → ●)
ti)
)

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

25 inspectB.slides

Decomposition

(integer array H[1:N];

 (integer c; integer n; n⇐ 1;
it (n ≤ Ν →
 (
(integer u; integer l; boolean p; l ⇐ 1; c⇐ 0;
it (u ⇐ l + n -1;
(u ≤ N → (

(integer i; i ⇐ 0; p ⇐ true;
it (i < (u - l +1)÷2 →

(A[l+i] = A[u-i] → (i ⇐ i + 1;☛)
| A[l+i] ≠ A[u-i] → (p ⇐ false; ●))

| (u - l +1)÷2 ≤ i→●)
ti)
;
 (¬p → skip | p→ c ⇐ c+1); l ⇐ l+1; ☛)
| u > N → ●))
ti)
;
 H[n] ⇐ c; n ⇐ n +1;☛)
 | n > N → ●)
ti)
)

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

26 inspectB.slides

Displa y: An Example

Problem: ctpal≡

--

Solution: ctpal≡
(integer u, l; boolean p; l ⇐ 1; c⇐ 0;
it (u ⇐ l + n -1;
(u ≤ N → (palul; (¬p → skip | p→ c ⇐ c+1);

l ⇐ l+1; ☛)
| u > N → ●))
ti)
--

palul ≡: NC(l,u,A) ∧ (p’ = pal(A,l,u)

where
pal(A,b,c)≡ ((1 ≤ b ≤ c ≤ N) ∧
(∀ i, 0 ≤ i < (c- b +1)÷2 ⇒ A[b+i]=A[c-i])))

true

H1

c’ = carda({ l | pal(A,l,n + l - 1)})

a. card(x), where x is a set, is the number of elements in x.

H2 G

∧ ΝC(n,Α)

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

27 inspectB.slides

Displa ys: An Explanation

The top part of each display is the specification for
the program in the middle.

The program in the middle is kept small by
removing sections, creating a display for them, and
including their specification in the bottom part.

The bottom part contains a specification of these
invoked programs.

To check a display determine the description of the
program in the middle, and see if it satisfies the
specification at the top. In doing this, use the
specifications of the invoked programs, not their
text.

To check a set of displays, make sure that every
specification at the bottom of one display is at the
top of another. The exceptions:

• standard programs
• primitive programs

Completeness can be checked mechanically.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

28 inspectB.slides

Can we Document Real Programs This Way?

Yes,

• Ontario Hydro/AECL/AECB did it.
• Key components of our tool system were

documented in this way?
• We have done some parts of commercial systems.
• Small components are done in my industrial courses.

But,

How important is it to you?

It will cost “up front time”, may save time and cost
later.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

29 inspectB.slides

Structure and Inspection

Well-structured programs are easier to decompose.
They can be decomposed by purely syntactic means.

Well-structured programs are much easier to inspect.

Inspection encourages good structuring.

Inspection suggests structural improvements.

Inspected programs are easier to maintain.

Modified programs need not be completely re-
inspected. The parts that must be inspected again can
be easily identified.

The cost of future maintenance is greatly reduced.

The definition of “well-structured” should not be
based on the absence or presence of certain control
structures. It has to do with the ease of
decomposition. [2]

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

30 inspectB.slides

Our Initial Experience:
Darlington Nuc lear Power Generating Station 1

Three control systems in Canadian reactors:
• one normal control system
• two independent shutdown systems

Safety analysisassumescontrol system will fail.
Only shutdown systems are considered safety-
critical.

Previous shutdown systems were analogue and relay
systems.

At Darlington they are software controlled.

Each Software System has a simple task.

Their designs are “diverse”.

The systems are more complex than their
predecessors with the result that AECB2 could not
be confident of their trustworthiness.

How can we increase that level of confidence?

1 Discussed in more detail in [4] and [3].
2 Atomic Energy Control Board of Canada

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

31 inspectB.slides

Why We Could Not Use English

The following type of sentence was found in the
requirements document.

“Shut off the pumps if the water level
is above 100 meters for 4 seconds”

What does this simple sentence mean?

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

32 inspectB.slides

Three Reasonab le Interpretations:

“Shut off the pumps if the mean water
level over the past 4 seconds was
above 100 meters”.

“Shut off the pumps if the median
water level over the past 4 seconds
was above 100 meters”.

“Shut off the pumps if the “rms”
water level over the past 4 seconds
was above 100 meters”.

[(∫
T-4
T WL(t)dt) ÷ 4 > 100]

(MAX[t-4,t] (WL(t)) + MIN[t-4,t] (WL(t))) ÷ 2 > 100

WL2(t)dt) ÷ 4) > 100T-4
T(∫

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

33 inspectB.slides

A Four th (Unreasonab le) Interpretation:

“Shut off pumps if the minimum
water level over the past 4 seconds
was above 100 meters”.

This is the most literal interpretation!

It is a disaster waiting to happen!

If you use natural languages, there are thousands of
such phrases waiting to “bug” you.

MIN[T-4,T] [WL(t)] > 100

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

34 inspectB.slides

The Inspection Pr ocess at Darlington

Four teams:

(1) Application Experts

(2) Programming Experts

(3) Verifiers

(4) Auditors

Roles of the teams:

(1) Produces requirements tables.

(2) Produce Program Function Tables (Displays).

(3) Show (1) = (2) and that (2) are correct.

(4) Audit the “proofs”.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

35 inspectB.slides

Subsequent Experience

In classes on this method, we have applied this to
numerous small industrial programs that were
believed to be correct.

In most cases, we found unexpected errors.

In some cases, the participants could not state the
requirements.

In other cases, the program could not be
decomposed (machine code w/o documentation).

I believe that one program was correct.

In all cases, we could improve the program.

We have found errors in textbook programs, library
programs, and well-used and tested programs.

No process is perfect, but this one engenders
confidence. It produces code that people trust.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

36 inspectB.slides

What Makes Things Har d?

Variables with no names.

Variables with long names or characterising
expressions.

Quantification over indices rather than elements.

Programs that are not understood.

Programs that are badly modularised.

Self-referencing data structures

These can all be fixed!

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

37 inspectB.slides

Essential P oint: Divide and Conquer

The initial decomposition is essential. Attempts to
simply scrutinise the program fail.

Trying to read the program the way a computer
would is much less effective. Logically connected
parts may be far apart.

The use of tables is essential. It breaks things down
into simple cases so that

• We can be sure that all cases are covered

• Each case is straightforward

We consider all variables, but one at a time.

We consider all cases, one at a time.

We can take “breaks”, go home and sleep, even take
holidays, without losing our place.

Using displays and tabular summaries is far more
work than Fagan’s English paraphrasing, but it
imposes a discipline that helps.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

38 inspectB.slides

The Other Essential P oint:
Precise , Abstract Descriptions

Having lots of little parts is not enough.

We have to be sure that the parts fit together.

We have to be able to do that without page-flipping.

Each part’s behaviour must be precisely summarised
without giving intermediate states.

We must be sure that the description at the bottom of
one display will be identical with that at the top of
another display.

These global checks can, and have been,
mechanised.

Precise descriptions are painstaking work, but if
quality is important, they are essential.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

39 inspectB.slides

It’s not al ways easy!

The most critical step, besides decomposition, is
finding a good representation for the state space.

It is not al ways w or thwhile .

There are informal variations.

It is a capability that your organisation should have.

 McMaster University

August 3, 1999 17:33

Department of Computing And Software
Software Engineering Research Group

“connecting theory with practice”

40 inspectB.slides

Some Sug gested Reading

(1) Parnas, D. L., Weiss, D. M., “Active Design
Reviews: Principles and Practices”,Proceedings
of the 8th International Conference on Software
Engineering, London, August 1985.
Also in Journal of Systems and Software,
December 1987.

(2) Parnas, D. L., Madey, J., Iglewski, M.,
“Precise Documentation of Well-Structured
Programs”,
IEEE Transactions on Software Engineering,
Vol. 20, No. 12, December 1994, pp. 948 - 976.

(3) Parnas, D. L. “Inspection of Safety Critical
Software using Function Tables”, Proceedings of
IFIP World Congress 1994, Volume III, August
1994, pp. 270 - 277.

(4) Parnas, D. L., Asmis, G.J.K., Madey, J.,
“Assessment of Safety-Critical Software in
Nuclear Power Plants”,Nuclear Safety, vol. 32,
no. 2, April-June 1991, pp. 189-198.

