SE 2A04 Fall 1999

Program Construction and the
Program Design Language

(Based on a presentation by D. L. Parnas)

Instructor: W. M. Farmer

Revised: October 25, 1999

Components of a Powerful Language

1. Primitive expressions

2. Means of combination

e Compound expressions are built from simpler ones
via constructors

e EXpressions denote the combination of objects

3. Means of abstraction

e Compound expressions are built from simpler ones
via constructors

e EXxpressions denote new objects

Taken from Abelson, Sussman, and Sussman, Structure
and Interpretation of Computer Programs

Example: Lambda Notation

e Lambda notation (or something equivalent) is used in
many languages to express ideas about functions

e Objects: functions and individuals

e Primitive expressions: names for primitive functions and
individuals

— For example, O: N, suc: N— N, +: Nx N — N

e Means of combination: function application constructor

— suc(0), 4+(suc(0),suc(0))

e Means of abstraction: function abstraction constructor
— Az: N.suc(suc(0)), Az: N. +(z,)

Constructing Programs

e At the machine level, programming is ‘“telling the
computer what to do”

e At the human level, programming is constructing
bigger programs from smaller ones

— Previous written programs are building blocks

— Constructors are used to assemble new programs
from the building blocks

— The new programs become building blocks for
someone else

e If we are given a mathematical description of the
building blocks, we must be able to produce a
mathematical description of the new programs

Program Design Language (PDL)

e Pseudocode language for describing the construction of
new programs from primitive programs

e Primitive programs include variable assignment, abort,
and skip

e PDL has four constructors:

— Sequential composition

— Conditional execution

— Selection (of conditional programs)
— Iteration

e PDL programs are well-structured, easy to understand,
and easy to implement in an imperative programming
language down to the primitive programs

Programs and States

e Programs are intended to start in certain states and, if
they terminate, end in certain states

e Programs usually exhibit different behavior with different
start states

— Start states may lead to behavior considered incorrect

e \What are the "“good" start states for a program?

— Program runs correctly and eventually terminates
(safe state)

— Program runs correctly but does not terminate
(semi-safe state)

e What are the possible end states for a program??

Sequential Composition

e Construction rule: If A and B are programs,
A; B is a program.

— Intuitively, A; B means do A and then do B
. A B
— State transition: s; — so — s3

— Note: A and B need not be primitive programs

e T his constructor is found in almost every programming
language

e Simple examples:

— Assignment with two variables
— Swapping two values

Partial Syntax for PDL (1)

Expressed in Backus-Naur Formalism (BNF):

<program> ::= <simple program> | <composed program>
<simple program> ::= <primitive program>
| (<program>)

<composed program> ::=

<simple program> ‘;’ <simple program>
| <composed program> ¢;’ <simple program>
<primitive program> ::= <assignment>
| ‘abort’

| ‘skip’
_

Are More Constructors Needed?

e With a “rich” set of primitive programs, many programs
can be constructed using just ;" alone
— APL is a programming language in which programs are
constructed from powerful primitives using sequential
composition

e \We need additional constructors to:

— Limit the conditions under which a program will be
executed (conditionals)

— Select which of several programs to execute
(branches)

— Iterate programs (loops)

Guarded Programs

e A guard is a boolean expression

— Boolean expressions evaluate to true or false

e Construction rule: If g is a guard, and P is a program,
then g — P is a guarded program.

— Intuitively, ¢ — P means P should be executed only if
g evaluates to true

— If g evaluates to true, g — P is equivalent to g; P
— If g evaluates to false, g — P is equivalent to g

e “Guarded programs’” are considered to be distinct from
“programs”

10

Proper Use of Guards

e Guards should not be executed in “trap’” states:

— States in which the guard g does not terminate

— States in which the guard g terminates in a state in
which the program P does not terminate

e Best: Guards should not cause side-effects

11

Selection of Guarded Programs

e Construction rule: If A, A>,..., A, are guarded
programs, then (Ai|As|---|An) is @ program.

e Intuitively, (A1]|As]|---|An) means:

— Select one of Aq,A»,..., Ay, Whose guard is true and
execute its program

— But if all the guards are false, abort is executed

e Note: If more than one guard is true, the behavior of
(A1|Ap|---|An) is nondeterministic

12

Partial Syntax for PDL (2)

<program> ::= <simple program> | <composed program>
<simple program> ::= <primitive program>
| (<program>)

| (<guarded program list>)

|
<composed program> ::=
<guard> ::= <boolean expression>

<guarded program> ::= <guard> ‘->’ <simple program>

<guarded program list>
<guarded program>
| <guarded program list> ‘|’ <guarded program>

<primitive program> ::=

13

Divide and Conquer Programming

e Divide and conquer is one of the principal ways of
mastering complexity in programs

— Never try to understand or write a whole program at
once

e Guarded program lists facilitate divide and conquer

e TO check a guarded program list do:
1. Make sure that at least one guard is true in every state

2. Make sure each guarded program will behave correctly
when the guard is true

14

Iteration

e [0 iterate a program means to repeat the program one
or more times

— Part of the repeated program determines whether the
program should be executed again

e Construction rule: If P is a program, then
it P ti
IS @ program.

— it P ti is called a loop
— P is called the body of the loop

e it P ti means P will be executed and then, by a
decision made within P, either P will be executed again
or execution will stop

15

Go and Stop Primitives

e [WO new primitives are introduced to determine whether
iteration should continue or stop: go, stop

— If go is executed in it P ti, the iteration of P continues

— If stop is executed in it P ti, iteration stops
— If both are executed, only the last execution counts

— If neither are executed, iteration stops and abort is
executed

e Note: The execution of stop in P does not cause the
execution of P to stop

e Normally, P should execute either go or stop during each
iteration

16

Other Iteration Constructs

e wvhile B do P: it (B — (P;go) | B — stop) ti

e until B do P: it (-B — (P;go) | B — stop) ti

e repeat P while B: it P;(B — go | "B — stop) ti

e repeat P until B: it P;(—-B —go | B — stop) ti

o for] < A step S until C do P:

I < A;
it I<C—(P;I<1+4S;g0)|I>C — stop) ti

17

Full Syntax for PDL

<program> ::= <simple program> | <composed program>
<simple program> ::= <primitive program>
| (<program>)

| (<guarded program list>)
| it <program> ti

<composed program> ::=
<simple program> ‘;’ <simple program>

“;? <simple program>

| <composed program>

<guard> ::= <boolean expression>

<guarded program> ::= <guard> ‘->’ <simple program>

18

Full Syntax for PDL (cont.)

<guarded program list>
<guarded program>

| <guarded program list> ‘|’ <guarded program>
<primitive program> ::= <assignment>
| ‘abort’
| ‘skip’
| ‘go’
| ‘stop’
_

19

Termination Example

e Problem: (Even(‘z) = 2’ =0) A (Odd(‘z) = z' = 1)

e Solution:
x < abs(x);
it
((t=0Vx=1— stop) |

(r>1—>(r<=x—2;g0)))
ti

e Does the loop always terminate?

e Does the solution work for all values of z7

Checking Termination

e How to check whether a loop will terminate:

— Find a quantity that decreases whenever go is executed

in the loop’s body
— Show that the quantity is always greater than or equal
to some minimum value

e Many useful programs do not always terminate

e It is essential to know when a program will terminate

21

Euclid’s GCD Algorithm: Problem

e The GCD of two positive integers is the greatest
common divisor of the two integers

o Problem: (‘z >0) A (‘y>0)A(x' =y = GCD('z,'y))

e Some mathematical facts:

— Ifx>0, y >0, and x > y, then
GCD(z —y,y) = GCD(z,y)
— If x > 0, then GCD(z,xz) =«

22

Euclid’s GCD Algorithm: Solution

e Solution:

((x>0Ay>0—
it
(x>y— (x<=x—y;go)) |
(y >z — (y<=y—x;80)) |
(z =y — stop))
ti) |
(r<0Vy<O0— abort))

e The loop terminates because:

— Max(z,y) decreases whenever go is executed
— Max(z,y) is always > GCD(x, y)

23

