
 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

1 progspecdes.slides

Precise Description and Specification of Programs

David Lorge Parnas, P.Eng.
NSERC/Bell Industrial Research Chair in Software Engineering

Director of the Software Engineering Programme

DEPARTMENT OF COMPUTING AND SOFTWARE

Faculty of Engineering

 McMaster University

Hamilton ON Canada L8S 4K1

Abstract
Precise descriptions and specifications of programs can be very
useful if they are simpler than the products that they describe.
No new mathematical concepts are needed for this task; we
need only use old math in relatively new ways.

We discuss the difference between descriptions of programs,
specifications of programs, and models of programs

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

2 progspecdes.slides

What do we want to do with mathematical
descriptions of software?

(1) Describing software products that we already
have - so that people can use them without reading
the code.

(2) Writing specifications for software products we
do not yet have - so that the programmers and
clients can agree on the requirements.

(3) Be able to verify that a product meets its
requirements (testing or proving).

What are the Criteria?

(1) Descriptions must be easier to read than the code.

(2) We must state the requirements in a way that does
not restrict the solutions unnecessarily.

(3) Testing and proof can eventually be automated.

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

3 progspecdes.slides

Are Pr ograms Diff erent
From Other Engineering Pr oducts?

Before we had computers, engineers used classical
mathematics to describe and analyse their products.

In Computer Science, most researchers have turned
to newly invented “languages”.

We are using software to replace conventional
products.

Why can’t we simply go on using the mathematics
we used to use?

Right Answer: The functions have many more points
of discontinuity. We will return to this point later.

WrongAnswer: Conventional products are inanimate
objects.

Wrong Answer: We need to describe the procedure
followed by the program.

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

4 progspecdes.slides

Describing Engineering Pr oducts

Engineers use mathematics, not just words, to
describe their products.
• They use a variety of descriptions rather than attempt

one “complete” description.

• There isnever a complete description of a product.

• Each product description is intended for a different
purpose and each is an accurate description of some
aspect of the product.

• Even taken together, these descriptions never constitute
a complete description. There are always some facts that
are not stated in the descriptions.

Even for simple physical objects, Engineers produce
several drawings (“views”) and require additional
numerical specification sheets

Current specification “languages” make no provision
for this. They use the same approach for all “views”!

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

5 progspecdes.slides

Types of Pr ogram Descriptions

In this talk, I distinguish 3 types of descriptions:

• constructive descriptions, which show how a
program is composed of other programs,

• behavioural descriptions, which describe the
visible behaviour of a program without discussing
how it was constructed, and

• specifications, which describe requirements that a
program must meet.

Texts in a “programming language” are constructive
descriptions. Each “language” contains

• constructors, and

• primitive programs.

The other two are the main subject of this talk.

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

6 progspecdes.slides

Descriptions vs. Specifications

Engineers make a distinction between specifications
of products and other descriptions of those products.

Definition 1:

An actualdescriptionis a statement of someactual
attributes of a product, or set of products. ❑

Definition 2:

A specificationis a statement of all propertiesrequired
of a product, or a set of products. ❑

In the sequel, “description”, without modifier, means
“actual description”.

• A description may include attributes that are not
required.

• A specification may include attributes that a (faulty)
product does not possess.

• The statement that a product satisfies a given
specification constitutes a description.

The third fact results in much confusion. A useful
distinction has been lost.

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

7 progspecdes.slides

Descriptions vs. Specifications

Any list of attributes may be interpreted aseither a
description or a specification.

Example:

“A volume of more than 1 cubic meter”

This could be either an observation about a specific
box or, a requirement for a box that is about to be
purchased.

A specification may offer a choice of attributes; a
description describes the actual attributes, but need
not describe them completely.

Sometimes one may use one’s knowledge of the
world to guess whether a statement is a description or
a specification.

Example:

“Milk, badly spoiled”

Guessing is not reliable. We need to label
specifications and descriptions to distinguish them.

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

8 progspecdes.slides

Programs and Ex ecutions

In engineering it is vital to clearly state the relationship between the
mathematical terms and the physical objects. We must do that here;

A digital computer will be viewed as a finite1 state
machine and a program as a description of a behaviour
pattern for that machine.

Definition 3:
A finite state machineis a machine that is always in
exactly one of a finite set, S, of stable states and whose
operation consists of a sequence of state changes, i.e.
transitions from state to state. These machines have a
finite set of input symbols, called theinput alphabet,
and a finite set of output symbols, theoutput alphabet.❑

It would be a mistake to confuse the physical machine with its
description by saying “a finite state machine is an n-tuple...”.

Definition 4:
An executionis a sequence (either finite or infinite) of
states. ❑

1 Much of the “theory” applies if the machine had an infinite number
of states, but in applications it is essential to remember the finiteness.

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

9 progspecdes.slides

Programs and Ex ecutions

It is convenient, and conventional, to represent the
states of the machine as having two components
(P,s). P, which is usually fixed, is called the program
whereas s, called the data state, may vary.

This “structuring” of the state is actually quite
arbitrary. Information may be moved between P and s
subject only to the condition that P not change while
the machine is running.

In the sequel, we will assume such a division and S
refers to the set of possible data states for a given P.

Definition 5:
A program determines a set of possible executions,
sometimes calledthe executions of that program. The
set of all executions of P for a set, S of possible data
states, is denotedExec(P,S). ❑

Definition 6:
The subset of Exec(P,S) that begin with the state (P,x),
((P,x) ∈S), is denoted by eP(x), and (P, x), or simply x,
is referred to as the starting state of those executions.❑

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

10 progspecdes.slides

Programs and Ex ecutions

Definition 7:
If there exists an execution in eP(x) that is finite and its
last data state is z, we write
<x,…, z> ∈ eP(x), and say that thisexecution
terminates (in z), and call z thefinal state (of this
execution).
We may also say, “theprogram Pmay start in x and
terminate in z. ❑

Definition 8:
An infinite sequence in eP(x) (<x, …>) is called anon-
terminating execution. ❑

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

11 progspecdes.slides

Programs and Ex ecutions

Definition 9:
If there exists a data state x, ((P,x)∈ S), such that eP(x)
contains two or more distinct executions, then P is
called anon-deterministic program. ❑

Definition 10:
If for a given data state x, ((P,x)∈ S), every member of
eP(x) is finite, x is called asafe stateof P. The set of
safe states of P is denoted SP. ❑

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

12 progspecdes.slides

A Mathematical Interlude: LD-Relations

Definition 11:
A binary relationR on a given set U is a set of ordered
pairs with both elements from U,
i.e. R⊆ U × U.
The set U is called theUniverse of R.
The set of pairs R can be described by itscharacteristic
predicate, R(p,q),
i.e. R = {(p,q): U× U | R(p,q) =true}. The domainof R
is denoted Dom(R) and is {p |∃q [R(p,q)]}.
The range of R is denoted Range(R) and is {q |∃p
[R(p,q)]}.
Below, “relation” means “binary relation”. ❑

Definition 12:
A limited-domain relation(LD-relation) on a set, U, is
a pair, L = (RL, CL), where:
RL, the relational componentof L, is a relation on U,
i.e. RL ⊆ U × U, and
CL, thecompetence setof L, is a subset of the domain
of RL, i.e. CL ⊆ Dom(RL). ❑

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

13 progspecdes.slides

Behavioural Descriptions of Pr ograms

Definition 16:
Behavioural descriptionsdescribe some aspects of the
executions of a program; they need not describe how
the program is constructed from component programs.❑

For example, performance models are behavioural
descriptions.

Those who are going to use,not inspector modify, a
program need behaviour descriptions far more than
they need constructive descriptions of programs.

Even programmers need behavioural descriptions of
constructed programs. The constructive descriptions
of “large” programs (programs constructed by using
many applications of the constructors) are very hard
to understand.

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

14 progspecdes.slides

Before/After Descriptions

Before/after descriptions are a class of behavioural
descriptions that are used when the intermediate
states of an execution are not important. For each
state, s, they must describe:

• (a) whether or not s is safe, and

• (b) the set of final states of the executions in eP(s).

The methods used in most approaches to program
verification are forms of before/after descriptions.

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

15 progspecdes.slides

Using LD-Relations as Bef ore/After
Descriptions (1)

Definition 17:
Let P be a program, let S be a set of states, and let
LP = (RP, CP) be an LD-relation on S such that
(x,y) ∈ RP if and only if <x,…,y>∈ Exec(P,S),
and CP = SP.

1 Lp is called theLD-relation of P ❑

By convention, if CP is not given, it is, by default,
Dom(RP).

1 Please note that CP is not the same as the
precondition used in VDM [4]. SP is the safe set of P.

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

16 progspecdes.slides

Using LD-Relations as Bef ore/After
Descriptions (2)

The following follow from Definition 17:
• If P starts in x and x∈ CP, P will always terminate;

if (x, y) ∈ RP, P may terminate in y.

• If P starts in x, and x∈ (Dom(RP) − CP), the
termination of P is non-deterministic; in this case,
if (x, y) ∈ RP, when P is started in x, the execution
may terminate in y or may not terminate.

• If P is started in x, and x∉ Dom(RP), then the
execution will not terminate.

• If P is a deterministic program, the relational
component, RP, is Mills’ program function and CP
(which will be exactly Dom(RP)) need not be
written. Hence, our approach is “upward
compatible” with Mills’ [2,3].

By these conventions we are able to provide
complete before/after descriptions of any program
but have an efficient representation for those cases
that arise most often.

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

17 progspecdes.slides

Using LD-Relations as Bef ore/After
Descriptions (3)

LD-relations have advantages over other, more
popular, before/after descriptions.

• They providecompletebefore/after descriptions of
non-deterministic programs.

• They can be described by giving the characteristic
predicates of the Relation and Competence Set;
those predicates can be expressed in terms of
values of the actual, program variables.

The last property is of great practical value.

It allows us to use completely conventional
(classical) mathematics yet still provide descriptions
in terms of things that programmers know about.

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

18 progspecdes.slides

Alternative Beha vioural Descriptions

(1) Before/after descriptions do not describe
invariants. Users of a program do not need to
know the invariant of its loops.

(2) VDM does not describe the behaviour of a
program if the precondition doesn’t hold. The
VDM model does not allow one to distinguish
certain programs that have distinct before/after
behaviour.

(3) Pre/Post conditions are a fiction. We are not really
interested in two separate conditions and are often
forced to add (otherwise unnecessary) variables
so we can describe a relation.

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

19 progspecdes.slides

Alternative Beha vioural Descriptions

A standard (decades older) alternative uses a single
relation with a special symbol (e.g. “⊥”) representing
non-termination.
• This is mathematically (theoretically) equivalent. You

can derive the LD-Relation from it and vice versa.

• ⊥ is not a state and exceptions must be made for it
when giving the algebra of relations. Certain
statements of algebraic laws become more complex.

• The characteristic predicate of the relation cannot be
written in terms of variable values alone. One must
add something. This is a practical disadvantage.

The Sets/relations can be characterised by predicates.
This gives us “predicative programming” but for the
completely general behavioural description you need
two predicates or some other artifact.

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

20 progspecdes.slides

Specifying Pr ograms

Specifications may allow behaviour not actually
exhibited by a satisfactory program.

We can also use LD-relations as before/after
specifications:

To do this we must describe how the description of a
program should be related to a specification that has
been provided.

Definition 18:
Let Lp = (RP, CP) be the description of program P.
Let S, called aspecification, be a set of
LD-relations on the same universe and
LS = (RS, CS) be an element of S.

We say that:
(1) Psatisfies the LD-relationLS, iff CS ⊆ CP
and RP ⊆ RS, and
(2) Psatisfies the specificationS, iff Lp satisfies at least
one element of S. ❑

Often, S has only one element. If S = {LS} is a
specification, then we can also call LS a specification.

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

21 progspecdes.slides

Specifying Pr ograms

The following follow from Definition 18.
• A program will satisfy it’s own description as well as infinitely many

other LD-relations.

• An acceptable program mustnot terminate when started in states
outside Dom(RS).

• An acceptable program must terminate when started in states in CS
(CS ⊆ Dom(RP)).

• An acceptable program may only terminate in states that are in
Range(RS).

• A deterministic program can satisfy a specification that would also
be satisfied by a non-deterministic program.

Note the following differences between the
description and the specification of a program.
• There is only one LD-relation describing a program, but that

program will satisfy many distinct specifications described by
different LD-relations.

• An acceptable program need not exhibit all of the behaviours
allowed by RS (RP ⊆ RS).

• An acceptable program may be certain to terminate in states outside
CS. (CS ⊆ CP).

The interpretation of LD-relationsmust be stated
explicitly!

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

22 progspecdes.slides

The “La ws” of Pr ograms

Do Software Engineers have laws for programs that
correspond to Kirchoff’s laws for circuits?

Is there an equivalent of physics for programs?

Yes!

The basic laws of programs are essentially the
axioms of the algebra of relations.

If you accept the fact that LD-relations provide
adequate descriptions of program behaviour,
sequential execution is relational composition.

The proofs are easy if you use classic results about
relations.

These laws allow you to find behavioural
descriptions of constructed programs if given:

• the constructive description of those programs and,

• the behavioural descriptions of the primitive programs.

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

23 progspecdes.slides

What New Notation do we Need?

Although the mathematics is old, and the abstract
notation for defining things is old, the applications
are new.

We have to describe relations and functions that have
non-heterogeneous ranges and domains and can have
a discontinuity at arbitrary points.

We have found a variety of tabular notations to be
useful.

Ryszard Janicki, has found new ways to unite these
tabular notations.

Jeff Zucker, Martin von Mohrenschildt and I and our
students are implementing tools for transformations.

We are trying to:

• Make the documentation easier to produce
• Make the documentation more useful

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

24 progspecdes.slides

A Simple Con ventional Expression

A tab ular e xpression:

The above is one of many kinds of tables!

Simple tables like thisunderstate the advantage.

These have “practitioner appeal”.

They can be used withany mathematical method.

(((∃ i, B[i] =x) ∧ (B[j’] = x) ∧ (present’ =
true)) ∨ ((∀ i, ((1 ≤ i ≤ N) ⇒ B[i] ≠
x))∧(present’ = false))) ∧ (‘x = x’ ∧ ‘B =B’)

Specification for a search program
(∃ i, B[i] =x) (∀ i, ((1 ≤ i ≤ N) ⇒

B[i] ≠ x))

j’ | B[j’] = x true

present’= true false ∧
NC(x, B)

 McMaster University

October 28, 1999 08:32

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Research Group

“connecting theory with practice”

25 progspecdes.slides

Conc lusions

• The mathematics of program descriptions can be kept quite
simple without losing utility. We don’t need complex new
theories.

• “Minor” changes can remove descriptive power.

• The difference between program description and program
specification can be made precise, even though the same
mathematical formalism can be used for both. Using these
words interchangeably, as is often done, is a mistake.

• Our requirements for descriptions of objects and programs
are different; a different approach is needed.

• In many years of participation in practical software
development, I have seen many places where “theory” or
mathematics was useful, but it wasalways simple theory.

• When theories get complex, they are not likely to be useful or
used.

• Those who have defined new languages have not given
enough thought to what they are describing.

• We may need new mathematics, but we have not yet
exhausted what the old mathematics can do.

Vector Function Table
‘X > 7 ‘X= 7 ‘X< 7

H1
X’ = ‘X + 1 100 ‘X- 1

H2 G

Vector Relation Table

‘X > 7 ‘X = 7 ‘X < 7

H1
X’ | X’ = ‘X + 1 (X’ = 8) ∨ (X’ =

6) ∨ (X’ = 100)
X’ = ‘X-1

H2 G

Assume functions MAXIMUM, MINIMUM defined on
arrays and subarrays.

 (1≤ l ≤ u ≤n) ¬(1≤ l ≤ u ≤n)

H1

i’ | X[i’]=MINIMUM(X[l:u]) true

j’ | X[j’]=MAXIMUM(X[l:u]) true

H2 G

∧ ΝC (X, n, l, u)

(∃ l, (l > ‘k) ∧
(∀ i, 0 ≤ i ≤ p ⇒
pat[i]=dat[l+i]))

¬ (∃ l, (l > ‘k) ∧
(∀ i, 0 ≤ i ≤ p ⇒
pat[i]=dat[l+i]))

H1

k’ | k’ =minel({ l |
(∀ i, 0 ≤ i ≤ p ⇒
pat[i]=dat[l+i]) ∧
(l >‘k)})

true

m’= true false

i’ | i’ = p+1 true
H2 G

Assume functions MAXIMUM, MINIMUM defined on
arrays and subarrays.

 (1≤ l ≤ u ≤n) ¬(1≤ l ≤ u ≤n)

