INFORMAL SPEC

Integer Queue with Capacity = 12

(1) SYNTAX

(2) CANONICAL TRACES

(3) EQUIVALENCES

(4) VALUES

queue.slides - Parnas 1

July 3, 1996 12:56 pm

(1) SYNTAX
OUTPUT VARIABLES

ACCESS PROGRAMS

INFORMAL SPEC

Integer Queue with Capacity = 12

Variable Name

Type

front

<integer>

Program Name

Arg#l

Value

QI12INIT

ADD

<integer>:V

REMOVE

FRONT

<integer>

(2) CANONICAL TRACES

(3) EQUIVALENCES

(4) VALUES

queue.slides - Parnas

July 3, 1996 12:56 pm

(1) SYNTAX

(2) CANONICAL TRACES

INFORMAL SPEC

Integer Queue with Capacity = 12

canonical(T)~ T is Q12INIT followed by a string of zero to 12 ADD operations

(3) EQUIVALENCES

(4) VALUES

queue.slides - Parnas

July 3, 1996 12:56 pm

INFORMAL SPEC

Integer Queue with Capacity = 12

(1) SYNTAX

(2) CANONICAL TRACES

(3) EQUIVALENCES
T.Q12INIT = an initialized queue.

T.ADD(a) =
conditions equivalences
12 elements in queue %full%
Queue not initialized %Nolnit%
Normal queue Add one element to trace
T.REMOVE=
conditions equivalences
uninitialized %Nolnit%
empty %NoElement%
non-empty remove left most ADD
T.FRONT=
conditions equivalences
uninitialized queue %Nolnit%
empty but initialized %NoElement%
non-empty unchanged
(4) VALUES

queue.slides - Parnas

July 3, 1996 12:56 pm

INFORMAL SPEC INFORMAL SPEC

Integer Queue with Capacity = 12 Integer Queue with Capacity = 12

TYPE IMPLEMENTED: <queuel2>

(1) SYNTAX
(1) SYNTAX
OUTPUT VARIABLES
(2) CANONICAL TRACES Variable Name Type
front <integer>
ACCESS PROGRAMS
(3) EQUIVALENCES Program Name| Arg#l Value
Q12INIT
ADD <integer>:V
REMOVE
(4) VALUES FRONT <integer>
OUTPUT VALUES
Vifront(T) = (2) CANONICAL TRACES
conditions values canonical(T)« T is Q12INIT followed by a string of zero to 12 ADD operations
uninitialized %Nolnit%
empty but initialized %NoElement% (3) EQUIVALENCES
non-empty first element in queue
T.Q12INIT = an initialized queue.
RETURN VALUES T.ADD(a) =
Program Name| Argument N Values — -
conditions equivalences
FRONT Value front 12 elements in queue %full%
Queue not initialized %Nolnit%
Normal queue Add one element to trace
T.REMOVE=
conditions equivalences
uninitialized %Nolnit%
empty %NoElement%
non-empty remove leftmost ADD

] queueslides - Parnas 5 July 3, 1996 12:56 pm] queueslides - Parnas 6 July 3, 1996 12:56 pm

T.FRONT=

conditions

equivalences

uninitialized queue

%Nolnit%

empty but initialized

%NoElement%

non-empty unchanged
(4) VALUES
OUTPUT VALUES
V[front](T) =
conditions values
uninitialized %Nolnit%
empty but initialized %NoElement%
non-empty first element in queue
RETURN VALUES
Program Name, Argument N Values
FRONT Value front

queue.slides - Parnas

July 3, 1996 12:56 pm

Integer Queue with Capacity = 12

(1) SYNTAX

(2) CANONICAL TRACES

(3) EQUIVALENCES

(4) VALUES

queue.slides - Parnas 8

July 3, 1996 12:56 pm

Integer Queue with Capacity = 12

(1) SYNTAX
OUTPUT VARIABLES

Variable Name Type
front <integer>
ACCESS PROGRAMS
Program Name Arg#l Value
Q12INIT
ADD <integer>:V
REMOVE
FRONT <integer>
(2) CANONICAL TRACES
(3) EQUIVALENCES
(4) VALUES
queue.slides - Parnas 9

July 3, 1996 12:56 pm

Integer Queue with Capacity = 12

(1) SYNTAX

(2) CANONICAL TRACES

(canonical(T) (T = Q12INIT() .[ADD(ai)]i": 1)O(0sn<12))0T= _

(3) EQUIVALENCES

(4) VALUES

queue.slides - Parnas

10

July 3, 1996 12:56 pm

(1) SYNTAX

Integer Queue with Capacity = 12

(2) CANONICAL TRACES

(3) EQUIVALENCES
T.QL2INIT = Q12INIT

T.ADD(a) =

T.REMOVE=

T.FRONT=

(4) VALUES

conditions

equivalences

count(T1, ADD) = 12 where
T=QI12INIT.T1

%full%

T=_

%Nolnit%

count(T1, ADD) < 12 where
T=QI12INIT.T1

T.ADD(a)

conditions equivalences
T=_ %Nolnit%
T=Q12INIT %NoElement%

T#_0OT#QI2INIT

QI12INIT . S1 where
T=QI12INIT.ADD(a) . S1

conditions equivalences
T=_ %Nolnit%
T=Q12INIT %NoElement%

T#_OT#QIL2INIT

T

queue.slides - Parnas

11

July 3, 1996 12:56 pm

Integer Queue with Capacity = 12

(1) SYNTAX

(2) CANONICAL TRACES

(3) EQUIVALENCES

(4) VALUES
OUTPUT VALUES
VI[front](T) =
conditions values
T=_ a whererue, %Nolnit%
T =QI12INIT a wherdrue, %NoElement%
(T#_)0O(T # Q12INIT) awhere T = Q12INIT.ADD(a).S1

RETURN VALUES

Program Name| Argument N Values
FRONT Value front
queue.slides - Parnas 12 July 3, 1996 12:56 pm

Integer Queue with Capacity = 12

TYPE IMPLEMENTED: <queue12>
(1) SYNTAX

OUTPUT VARIABLES

Variable Name Type

front

<integer>

ACCESS PROGRAMS

Program Name Arg#l Value
Q12INIT

ADD <integer>:V

REMOVE

FRONT <integer>

(2) CANONICAL TRACES

canonical(T)~ (T =QL2INIT .[ADD(a)]]'_,)0 (0sn<12)

(3) EQUIVALENCES
T.Q12INIT = QI12INIT

T.ADD(a) =
conditions equivalences
count(T1, ADD) = 12 where o
%full%
T=QI12INIT. T1 B
T=_ %Nolnit%
count(T1, ADD) < 12 where
T=QL2INIT. T T-ADD(@)
T.REMOVE=
conditions equivalences
T=_ %Nolnit%
T=QI12INIT %NoElement%
Q12INIT . S1 where
T#_0OT#QL2INIT
-0T#Q T=QL2INIT. ADD() . S1
T.FRONT=
conditions equivalences
T=_ %Nolnit%
T=QI12INIT %NoElement%
T# _OT#QI2INIT T

queue.slides - Parnas

13

July 3, 1996 12:56 pm

(4) VALUES
OUTPUT VALUES
V[front](T) =
conditions values
T=_ a wherérue, %Nolnit%
T =QL2INIT a wherérue, %NoElement%
(T#_)O(T # Q12INIT) awhere T = Q12INIT.ADD(a).S1

RETURN VALUES

Program Name| Argument N

Values

FRONT

Value

front

queue.slides - Parnas

14

July 3, 1996 12:56 pm

Informal Design Document for Queuel12: Implementation 1 - Pascal

(1) DATA STRUCTURE
(1) DATA STRUCTURE

Informal Design Document for Queuel2: Implementation 1 - Pascal

CONSTANTS
Constant Name Definition
QSIZE 12
TYPES
Type Name Definition
<qds> array[0..QSIZE-1] of intege
VARIABLES
Type Definition/Name Variables Initial Value:
(2) ABSTRACTION FUNCTION <qds> DATA “Don't Care”
0..QSIZE-1 FR “Don’t Care”
<boolean> FULL “Don’t Care”
<boolean> old false
Abbreviation:

<gs>the set of possible values of the data structure.

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

(3) PROGRAM FUNCTIONS

] queueslides - Parnas 15 July 3, 1996 12:56 pm] queueslides - Parnas

16

July 3, 1996 12:56 pm

Informal Design Document for Queuel12: Implementation 1 - Pascal Informal Design Document for Queuel2: Implementation 1 - Pascal
(1) DATA STRUCTURE
(1) DATA STRUCTURE
(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

pf_Name Arg#l Signature
pf_Q12INIT changes the data structure
gpf_ADD <integer> changes the data structures baged

(2) ABSTRACTION FUNCTION on an integer and old value
pf_REMOVE changes the data structure

af: maps from the data structures, gs, to abstract traces. -
computes integer and changes fhe

af(DATA,F,R,FULL) ¢ pf_FRONT data structure
initialised, not empty and no wraparound Queue data stored between F and R in DATA pf_QI2INIT &
initialised, not empty with wraparound Queue data stored from F to 0 and then from QSIZE-1 fo R —

initialised, empty No data in queue F, - 0
not initialised Not yet a queue R= !

FULL' = false

DATA’ | true

old = true

gpf_ADD(a) € F won't change and only DATA at new R can chaarge

Must wraparound and initialised Nota wraparﬁ;lgg case and Inltla'Not initialised
(3) PROGRAM FUNCTIONS edge case edge case not edge
not edge cas
‘FULL - ‘FULL ‘FULL - ‘FULL case
DATA[R'] = |'DATA[R] a a ‘DATA[R] a a ‘DATA[R]
R’ = ‘R QSIZE-1 QSIZE-1 ‘R ‘R-1 ‘R-1 ‘R
FULL" = ‘FULL false ‘F = QSIZE-2 ‘FULL false edge FULL
pf_REMOVE ¢ No change to DATA, old, or &d
initialised and not empty empty
(‘F=0) (F>0) or not initialised
F= QSIZE-1 ‘F-1 ‘F
FULL = false false ‘FULL

pf_FRONT ¢ NC(R,FULL DATA, F) and

not empty and initialisef empty or not initialisdd
return ‘DATA['F]

] queueslides - Parnas 17 July 3, 1996 12:56 pm] queueslides - Parnas 18 July 3, 1996 12:56 pm

Informal Design Document for Queuel12: Implementation 1 - Pascal

(1) DATA STRUCTURE

CONSTANTS
Constant Name Definition
QSIZE 12
TYPES
Type Name Definition
<qds> array[0..QSIZE-1] of intege
VARIABLES

Type Definition/Name Variables Initial Value:
<qds> DATA “Don’t Care”
0..QSIZE-1 F, R “Don’t Care”
<boolean> FULL “Don’'t Care”
<boolean> old false

Abbreviation:

a predicate edge is true if the rear is just behind the front or front is at the top of the array and the

rear is at the first array element.

<gs>the set of possible values of the data structure.

(2) ABSTRACTION FUNCTION

af: maps from the data structures, gs, to abstract traces.

af(DATA,F,R,FULL) ¢

initialised, not empty and n
wraparound

Queue data stored between F and R in DATA

initialised, not empty with
wraparound

Queue data stored from F to 0 and then from QSIZE-1 to R

initialised, empty

No data in queue

not initialised

Not yet a queue

queue.slides - Parnas

19

July 3, 1996 12:56 pm

(3) PROGRAM FUNCTIONS

pf_Name Arg#l Signature
pf_QI12INIT changes the data structure
gof_ADD <integer> changgs the data structures baded
on an integer and old value
pf_REMOVE changes the data structure
pf_FRONT computes integer and changes fhe
data structure
pf_Q12INIT d
F= 0
R = 1
FULL' = false
DATA’ | true
old = true
gpf_ADD(a) ¢ F won't change and only DATA at new R can change
Must wraparound, initialised Not a wraparound case, initialised Not initigjised
edge case edge case not edge
not edge cas:
‘FULL - ‘FULL ‘FULL - ‘FULL case
DATA[R] = |‘DATA[R] a a ‘DATA['R] a a ‘DATA['R]
R’ = ‘R QSIZE-1 QSIZE-1 ‘R ‘R-1 ‘R-1 ‘R
‘FULL
FULL = ‘FULL false ‘F = QSIZE-2 ‘FULL false edge
pf_REMOVE ¢ No change to DATA, old, or &d
initialised and not empty empty

(‘F=0) (F>0) or not initialised
F = QSIZE-1 ‘F-1 ‘F
FULL = false false ‘FULL

pf_FRONT ¢ NC(R,FULL)]

not empty and initialised

empty or not initialisqd

return

‘DATATH]

queue.slides - Parnas

20

July 3, 1996 12:56 pm

Design Document for Queuel2: Implementation 1 - Pascal

(1) DATA STRUCTURE
(1) DATA STRUCTURE

Design Document for Queuel2: Implementation 1 - Pascal

CONSTANTS
Constant Name Definition
QSIZE 12
TYPES
Type Name Definition
<qds> array[0..QSIZE-1] of intege
VARIABLES
Type Definition/Name Variables Initial Value:
<qds> DATA “Don’t Care”
0..QSIZE-1 FR “Don’t Care”
(2) ABSTRACTION FUNCTION <boolean> FULL “Don’t Care”
<boolean> old false
Abbreviation:

edged (R = F + 1)0(F = QSIZE-1)J (R = 0)

‘edged (R = 'F + 1) O (‘F = QSIZE-1)I (R = 0)
edge (R'=F + 1) 0 (F = QSIZE-1)I (R’ = 0)

<gs> ¢ gdsx 0..QSIZE-1x 0..QSIZE-1x booleanx boolean

(3) PROGRAM FUNCTIONS (2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

] queueslides - Parnas 21 July 3, 1996 12:56 pm] queueslides - Parnas

22

July 3, 1996 12:56 pm

Design Document for Queuel2: Implementation 1 - Pascal Design Document for Queuel2: Implementation 1 - Pascal

(1) DATA STRUCTURE (1) DATA STRUCTURE
(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

pf_Name Arg#l Value
pf_Q12INIT <qgs> — <gs>
gpf_ADD <integer> | <gsx <integer> — <gs>
(2) ABSTRACTION FUNCTION pf_REMOVE <gs> - <qs>
pf_FRONT <gs> — <gs>x <integer>
af: <gs>- <queuel2> pf_Q12INIT ¢
af(DATA,F,R,FULL) ¢ = 0
(~ edgeJFULL) O(F2R) Oold Q12INIT.ADD(DATA[F]).ADD(DATA[F -1]).ADD(DATA[R]) R = 1
Q12INIT . ADD(DATA[F]).ADD(DATA[0]).ADD(DATA[QSIZE-1]). ... FULL = false
(~ edgeJFULL) O(F<R)Oold "ADD(DATA[R]) SATA -
edge]~ FULL Oold Q12 INIT. o= e
- old _
gpf_ADD(a) & NC(F)ILj (j # R’) [NC(DATA[])] ONC(a)O
(R=0)Uold O (‘R#0)Uold - old
‘edgel] ‘edgel]
- ‘edge - ‘edge
‘FULL - ‘FULL ‘FULL - ‘FULL
2) PROGRAM FUNCTIONS DATA[R] = |‘DATA[R] a a ‘DATA['R] a a ‘DATA['R]
() R’ = ‘R QSIZE-1 QSIZE-1 ‘R ‘R-1 ‘R-1 ‘R
, . . . ‘FULL
FULL = FULL QSIZE=1 | ‘F = QSIZE-2 FULL QSIZE=1| edge

pf_REMOVE ¢ NC(DATAR)O

(- ‘edged‘FULL) Oold O (‘edged~'FULL)
(F=0) (F>0) 0~ old
F= QSIZE-1 ‘F-1 ‘F
FULL = false false ‘FULL
pf_FRONT ¢ NC(R,FULL DATA, F) O
(= ‘edgel)‘FULL) Oold | (‘edged-‘FULL) O~ old
DATA' = ‘DATA ‘DATA
F = F F
return ‘DATA['F]

] queueslides - Parnas 23 July 3, 1996 12:56 pm] queueslides - Parnas 24 July 3, 1996 12:56 pm

Design Document for Queuel2: Implementation 1 - Pascal

(1) DATA STRUCTURE

CONSTANTS
Constant Name Definition
QSIZE 12
TYPES
Type Name Definition
<qds> array[0..QSIZE-1] of intege
VARIABLES
Type Definition/Name Variables Initial Value:
<qds> DATA “Don’t Care”
0..QSIZE-1 F, R “Don’t Care”
<boolean> FULL “Don’'t Care”
<boolean> old false

Abbreviation:

edged (R =F + 1)0(F = QSIZE-1)J (R = 0)
‘edged (R =‘F + 1) O('F = QSIZE-1)O(R = 0)
edge ¢ (R'=F + 1) 0 (F = QSIZE-1)O (R’ = 0)
<gs> ¢ qdsx 0..QSIZE-1x 0..QSIZE-1x boolean

(2) ABSTRACTION FUNCTION

af: <gs>- <queuel2>

af(DATA,F,R,FULL,old) &

(= edgedFULL) O(F=R)
Oold

Q12INIT.ADD(DATA[F]).ADD(DATA[F -1]).ADD(DATA[R])

(- edgedFULL) O(F <R)
Oold .ADD(DATA[R])

Q12INIT . ADD(DATA[F]).ADD(DATA[0]).ADD(DATA[QSIZE-1]). ...

edged~ FULL Oold QI2INIT

- old

queue.slides - Parnas 25

July 3, 1996 12:56 pm

(3) PROGRAM FUNCTIONS

pf_Name Arg#l Value
pf_Q12INIT <gs> - <gs>
gpf_ADD <integer> | <gsx <integer> — <qgs>
pf_REMOVE <gs> - <qs>
pf_FRONT <gs> — <gs>x <integer>
pf_Q12INIT ¢
F= 0
R = 1
FULL' = false
DATA’ | true
old = true
gpf_ADD(a) & NC(F)O0j (j # R’) NC(DATA[])] ONC(a)0
(R=0)0oldO (R#0)0oldO
‘edgel ‘edgel] - old
- ‘edge - ‘edge
‘FULL - ‘FULL ‘FULL - ‘FULL
DATA'[R] = |'DATA[R] a a ‘DATA['R] a a DATA['R]
R’ = ‘R QSIZE-1 QSIZE-1 ‘R ‘R-1 ‘R-1 ‘R
FULL = ‘FULL false ‘F = QSIZE-2 ‘FULL false edge ‘FULL

pf_REMOVE ¢ NC(DATA,R)O

(- ‘edgel]‘FULL) Oold O

(‘edgel] - ‘FULL) [+ old

(F=0) (F>0)
F= QSIZE-1 F-1 F
FULL' = false false ‘FULL

pf_FRONT ¢ NC(R,FULL, DATA,

Fo

- ‘edged ‘FULL old O

(‘edged~‘FULL) O- old

return value =

‘DATA[F]

queue.slides - Parnas

26

July 3, 1996 12:56 pm

Informal Design Document for Queuel2: Implementation 2 - Pascal

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

queue.slides - Parnas

27

July 3, 1996 12:56 pm

Informal Design Document for Queuel2: Implementation 2 - Pascal

(1) DATA STRUCTURE

CONSTANTS
Constant Nam Definition
QSIZE
TYPES
Type Name Definition
<qds> array[0..QSIZE-1] of<integer>
VARIABLES
Type Definitions/Name Variables Initial Values
<qds> DATA “Don’t Care”
-1..QSIZE Size -1
Abbreviation
<gs> ¢ gqdsx 0..QSIZE-1
(2) ABSTRACTION FUNCTION
(3) PROGRAM FUNCTIONS
queue.slides - Parnas 28 July 3, 1996 12:56 pm

Informal Design Document for Queuel2: Implementation 2 - Pascal Informal Design Document for Queuel2: Implementation 2 - Pascal

(1) DATA STRUCTURE (1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

(2) ABSTRACTION FUNCTION

af:<gs>- <queuel2>
af(DATA,Size) ¢

(3) PROGRAM FUNCTIONS

Size >0 initialised queue with newest element in DATA[O]
Size=0 QIL2INIT Name Arg#l Signature
Size< 0 — pf_Q12INIT changes the data structure
gpf_ADD (a) <integer> ;r:nges data structure depending on inge-
pf_REMOVE changes data structure
pf_FRONT changes data structure and returns intgger
pf_Q12INIT & Set Size to zero.
f_ADD(a) ¢ NC(a)J
(3) PROGRAM FUNCTIONS 9pi_ADD(@) @
Queue full Queue not full
DATA’ | | NC(DATA) shift data up and insert a at DATA[O].
Size’ = ‘Size ‘Size+1
pf_REMOVE ¢ NC(DATA)O
Queue empty Queue not empty
Size’ = ‘Size ‘Size - 1

pf_FRONT ¢ NC(DATA,SizefIreturn =DATA[Size-1]

] queueslides - Parnas 29 July 3, 1996 12:56 pm] queueslides - Parnas 30 July 3, 1996 12:56 pm

Informal Design Document for Queuel2: Implementation 2 - Pascal

(1) DATA STRUCTURE

CONSTANTS
Constant Nam Definition
QSIZE 12
TYPES
Type Name Definition
<qds> array[0..QSIZE-1] of<integer>
VARIABLES
Type Definitions/Name Variables Initial Values
<qds> DATA “Don’t Care”
-1..QSIZE Size -1

Abbreviation
<gs> ¢ gdsx 0..QSIZE-1

(2) ABSTRACTION FUNCTION

af:<gs>- <queuel2>
af(DATA,Size) ¢

Size >0 initialised queue with newest element in DATA[O]
Size=0 QI12INIT
Size<0

queue.slides - Parnas 31

July 3, 1996 12:56 pm

(3) PROGRAM FUNCTIONS

Name Arg#l Signature

pf_Q12INIT changes the data structure

gpf_ADD (a) <integer> ZZ?nges data structure depending on irge-
pf_REMOVE changes data structure

pf_FRONT changes data structure and returns intgger

pf_Q12INIT ¢ Set Size to zero.
gpf_ADD(a) ¢ NC(a)d

Queue full Queue not full
DATA’ | | NC(DATA) shift data up and insert a at DATA[O].
Size’ = ‘Size ‘Size +1
pf_REMOVE ¢ NC(DATA)O
Queue empty Queue not empty
Size’ = ‘Size ‘Size - 1

pf_FRONT ¢ NC(DATA,SizefIreturn =DATA[Size-1]

queue.slides - Parnas

32

July 3, 1996 12:56 pm

Design Document for Queuel2: Implementation 2 - Pascal

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

queue.slides - Parnas

33

July 3, 1996 12:56 pm

Design Document for Queuel2: Implementation 2 - Pascal

(1) DATA STRUCTURE

CONSTANTS
Constant Nam Definition
QSIZE
TYPES
Type Name Definition
<qds> array[0..QSIZE-1] of<integer>
VARIABLES
Type Definitions/Name Variables Initial Values
<qds> DATA “Don’t Care”
-1..QSIZE Size -1
Abbreviation
<gs> ¢ gqdsx 0..QSIZE-1
(2) ABSTRACTION FUNCTION
(3) PROGRAM FUNCTIONS
queue.slides - Parnas 34 July 3, 1996 12:56 pm

Design Document for Queuel2: Implementation 2 - Pascal

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

af:<gs>- <queuel2>
af(DATA,Size) ¢

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

Design Document for Queuel2: Implementation 2 - Pascal

(3) PROGRAM FUNCTIONS

] queueslides - Parnas 35

Size >0 Q12INIT . ADD(DATA([Size-1]).ADD(DATA[0]) Name Arg#l | Signature

Size=0 Q12INIT pf_QI12INIT <gs> - <gs>

Size< 0 — gpf_ADD (a) <integer>| <gs <integer> — <gs>
pf_REMOVE <qgs> - <gs>
pf_FRONT <gs> - <gs>x <integer>|

pf_QI2INIT ¢ Size'=0

gpf_ADD(a) ¢ NC(a)d

‘Size = QSIZE‘Size =1

‘SizeZ QSIZE[Size= 0

0j(1<] < 'Size)[DATA'j] = ‘DATA[-1]] O

DATA’ | NC(DATA) Jj((‘Size+1)< j < QSIZE-1) [NC(DATA[]) 1 0
DATA[0]' = a
Size' = ‘Size ‘Size + 1
pf_REMOVE ¢ NC(DATA)O
‘Size <0 ‘Size >0
Size' = ‘Size ‘Size - 1
pf_FRONT ¢ NC(DATA,Size)Ireturn =DATA[Size-1]
July 3, 1996 12:56 pm] queueslides - Parnas 36 July 3, 1996 12:56 pm

Design Document for Queuel2: Implementation 2 - Pascal

(1) DATA STRUCTURE

CONSTANTS
Constant Nam Definition
QSIZE 12
TYPES
Type Name Definition
<qds> array[0..QSIZE-1] of<integer>
VARIABLES
Type Definitions/Name Variables Initial Values
<qds> DATA “Don’t Care”
-1..QSIZE Size -1

Abbreviation
<gs> ¢ gdsx 0..QSIZE-1
(2) ABSTRACTION FUNCTION
af:<gs>- <queuel2>
af(DATA,Size) ¢

Size >0 Q12INIT . ADD(DATA[Size-1]).ADD(DATA[0])

Size=0 QI12INIT

Size<0
queue.slides - Parnas 37 July 3, 1996 12:56 pm

(3) PROGRAM FUNCTIONS

Name Arg#l Signature
pf_Q12INIT <gs> - <gs>
gpf_ADD (a) <integer>| <gs <integer> — <gs>
pf_REMOVE <qgs> - <qs>
pf_FRONT <gs> — <gs>x <integer>
pf_Q12INIT ¢ Size'=0
gpf_ADD(a) ¢ NC(a)J
‘Size = QSIZE ‘Size£ QSIZE
Oj(1<j<'Size)] DATA'j] = 'DATA[-1]] O
DATA’ | | NC(DATA) Tj((‘Size+1)< j < QSIZE-1) [NC(DATA[]) 1 O
DATA[O] = a
Size' = ‘Size ‘Size +1
pf_REMOVE ¢ NC(DATA)D
‘Size< 0 ‘Size >0
Size’ = ‘Size ‘Size - 1
pf_FRONT ¢ NC(DATA,SizelIreturn =DATA[Size-1]
queue.slides - Parnas 38 July 3, 1996 12:56 pm

