
queue.slides - Parnas 1 July 3, 1996 12:56 pm

INFORMAL SPEC

Integer Queue with Capacity = 12

(1) SYNTAX

(2) CANONICAL TRACES

(3) EQUIVALENCES

(4) VALUES

queue.slides - Parnas 2 July 3, 1996 12:56 pm

INFORMAL SPEC

Integer Queue with Capacity = 12

(1) SYNTAX

OUTPUT VARIABLES

ACCESS PROGRAMS

(2) CANONICAL TRACES

(3) EQUIVALENCES

(4) VALUES

Variable Name Type

front <integer>

Program Name Arg#1 Value

Q12INIT

ADD <integer>:V

REMOVE

FRONT <integer>

queue.slides - Parnas 3 July 3, 1996 12:56 pm

INFORMAL SPEC

Integer Queue with Capacity = 12

(1) SYNTAX

(2) CANONICAL TRACES

canonical(T)↔ T is Q12INIT followed by a string of zero to 12 ADD operations

(3) EQUIVALENCES

(4) VALUES

queue.slides - Parnas 4 July 3, 1996 12:56 pm

INFORMAL SPEC

Integer Queue with Capacity = 12

(1) SYNTAX

(2) CANONICAL TRACES

(3) EQUIVALENCES

T.Q12INIT ≡ an initialized queue.

T.ADD(a) ≡

T.REMOVE≡

T.FRONT≡

(4) VALUES

conditions equivalences

12 elements in queue %full%

Queue not initialized %NoInit%

Normal queue Add one element to trace

conditions equivalences

uninitialized %NoInit%

empty %NoElement%

non-empty remove left most ADD

conditions equivalences

uninitialized queue %NoInit%

empty but initialized %NoElement%

non-empty unchanged

queue.slides - Parnas 5 July 3, 1996 12:56 pm

INFORMAL SPEC

Integer Queue with Capacity = 12

(1) SYNTAX

(2) CANONICAL TRACES

(3) EQUIVALENCES

(4) VALUES

OUTPUT VALUES
V[front](T) =

RETURN VALUES

conditions values

uninitialized %NoInit%

empty but initialized %NoElement%

non-empty first element in queue

Program Name Argument No Values

FRONT Value front

queue.slides - Parnas 6 July 3, 1996 12:56 pm

INFORMAL SPEC

Integer Queue with Capacity = 12

TYPE IMPLEMENTED: <queue12>

(1) SYNTAX

OUTPUT VARIABLES

ACCESS PROGRAMS

(2) CANONICAL TRACES

canonical(T)↔ T is Q12INIT followed by a string of zero to 12 ADD operations

(3) EQUIVALENCES

T.Q12INIT ≡ an initialized queue.
T.ADD(a) ≡

T.REMOVE≡

Variable Name Type

front <integer>

Program Name Arg#1 Value

Q12INIT

ADD <integer>:V

REMOVE

FRONT <integer>

conditions equivalences

12 elements in queue %full%

Queue not initialized %NoInit%

Normal queue Add one element to trace

conditions equivalences

uninitialized %NoInit%

empty %NoElement%

non-empty remove leftmost ADD

queue.slides - Parnas 7 July 3, 1996 12:56 pm

T.FRONT≡

(4) VALUES

OUTPUT VALUES
V[front](T) =

RETURN VALUES

conditions equivalences

uninitialized queue %NoInit%

empty but initialized %NoElement%

non-empty unchanged

conditions values

uninitialized %NoInit%

empty but initialized %NoElement%

non-empty first element in queue

Program Name Argument No Values

FRONT Value front

queue.slides - Parnas 8 July 3, 1996 12:56 pm

Integer Queue with Capacity = 12

(1) SYNTAX

(2) CANONICAL TRACES

(3) EQUIVALENCES

(4) VALUES

queue.slides - Parnas 9 July 3, 1996 12:56 pm

Integer Queue with Capacity = 12

(1) SYNTAX

OUTPUT VARIABLES

ACCESS PROGRAMS

(2) CANONICAL TRACES

(3) EQUIVALENCES

(4) VALUES

Variable Name Type

front <integer>

Program Name Arg#1 Value

Q12INIT

ADD <integer>:V

REMOVE

FRONT <integer>

queue.slides - Parnas 10 July 3, 1996 12:56 pm

Integer Queue with Capacity = 12

(1) SYNTAX

(2) CANONICAL TRACES

(canonical(T)↔ (T = Q12INIT() .)∧) ∨ T =

(3) EQUIVALENCES

(4) VALUES

ADD ai()[]i 1=
n

0 n 12≤ ≤()

queue.slides - Parnas 11 July 3, 1996 12:56 pm

Integer Queue with Capacity = 12

(1) SYNTAX

(2) CANONICAL TRACES

(3) EQUIVALENCES

T.Q12INIT ≡ Q12INIT

T.ADD(a) ≡

T.REMOVE≡

T.FRONT≡

(4) VALUES

conditions equivalences

count(T1, ADD) = 12 where

T = Q12INIT . T1
%full%

T = _ %NoInit%

count(T1, ADD) < 12 where

T = Q12INIT . T1
T.ADD(a)

conditions equivalences

T = _ %NoInit%

T = Q12INIT %NoElement%

T ≠ _ ∧ T ≠ Q12INIT
Q12INIT . S1 where

T = Q12INIT . ADD(a) . S1

conditions equivalences

T = _ %NoInit%

T = Q12INIT %NoElement%

T ≠ _ ∧ T ≠ Q12INIT T

queue.slides - Parnas 12 July 3, 1996 12:56 pm

Integer Queue with Capacity = 12

(1) SYNTAX

(2) CANONICAL TRACES

(3) EQUIVALENCES

(4) VALUES

OUTPUT VALUES
V[front](T) =

RETURN VALUES

conditions values

T = _ a wheretrue, %NoInit%

T = Q12INIT a wheretrue, %NoElement%

(T ≠ _) ∧ (T ≠ Q12INIT) a where T = Q12INIT.ADD(a).S1

Program Name Argument No Values

FRONT Value front

queue.slides - Parnas 13 July 3, 1996 12:56 pm

Integer Queue with Capacity = 12
TYPE IMPLEMENTED: <queue12>

(1) SYNTAX

OUTPUT VARIABLES

ACCESS PROGRAMS

(2) CANONICAL TRACES

canonical(T)↔ (T = Q12INIT .)∧
(3) EQUIVALENCES

T.Q12INIT ≡ Q12INIT

T.ADD(a) ≡

T.REMOVE≡

T.FRONT≡

Variable Name Type

front <integer>

Program Name Arg#1 Value

Q12INIT

ADD <integer>:V

REMOVE

FRONT <integer>

conditions equivalences

count(T1, ADD) = 12 where

T = Q12INIT . T1
%full%

T = _ %NoInit%

count(T1, ADD) < 12 where

T = Q12INIT . T1
T.ADD(a)

conditions equivalences

T = _ %NoInit%

T = Q12INIT %NoElement%

T ≠ _ ∧ T ≠ Q12INIT
Q12INIT . S1 where

T = Q12INIT . ADD(a) . S1

conditions equivalences

T = _ %NoInit%

T = Q12INIT %NoElement%

T ≠ _ ∧ T ≠ Q12INIT T

ADD ai()[]i 1=
n

0 n 12≤ ≤()

queue.slides - Parnas 14 July 3, 1996 12:56 pm

(4) VALUES

OUTPUT VALUES
V[front](T) =

RETURN VALUES

conditions values

T = _ a wheretrue,%NoInit%

T = Q12INIT a wheretrue,%NoElement%

(T ≠ _) ∧ (T ≠ Q12INIT) a where T = Q12INIT.ADD(a).S1

Program Name Argument No Values

FRONT Value front

queue.slides - Parnas 15 July 3, 1996 12:56 pm

Informal Design Document for Queue12: Implementation 1 - Pascal

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

queue.slides - Parnas 16 July 3, 1996 12:56 pm

Informal Design Document for Queue12: Implementation 1 - Pascal

(1) DATA STRUCTURE

CONSTANTS

TYPES

VARIABLES

Abbreviation:

<qs> the set of possible values of the data structure.

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

Constant Name Definition

QSIZE 12

Type Name Definition

<qds> array[0..QSIZE-1] of integer

Type Definition/Name Variables Initial Values

<qds> DATA “Don’t Care”

0..QSIZE-1 F, R “Don’t Care”

<boolean> FULL “Don’t Care”

<boolean> old false

queue.slides - Parnas 17 July 3, 1996 12:56 pm

Informal Design Document for Queue12: Implementation 1 - Pascal

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

af: maps from the data structures, qs, to abstract traces.
af(DATA,F,R,FULL)

(3) PROGRAM FUNCTIONS

initialised, not empty and no wraparound Queue data stored between F and R in DATA

initialised, not empty with wraparound Queue data stored from F to 0 and then from QSIZE-1 to R

initialised, empty No data in queue

not initialised Not yet a queue

df

queue.slides - Parnas 18 July 3, 1996 12:56 pm

Informal Design Document for Queue12: Implementation 1 - Pascal

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

pf_Q12INIT

gpf_ADD(a) F won’t change and only DATA at new R can changeand

pf_REMOVE No change to DATA, old, or Rand

pf_FRONT NC(R,FULL, DATA, F) and

pf_Name Arg#1 Signature

pf_Q12INIT changes the data structure

gpf_ADD <integer> changes the data structures based
on an integer and old value

pf_REMOVE changes the data structure

pf_FRONT
computes integer and changes the
data structure

F’ = 0

R’ = 1

FULL’ = false

DATA’ | true

old = true

Must wraparound and initialised
Not a wraparound case and initia-

lised
Not initialised

edge case
not edge case

edge case not edge

case‘FULL ¬ ‘FULL ‘FULL ¬ ‘FULL

DATA’[R’] = ‘DATA[‘R] a a ‘DATA[‘R] a a ‘DATA[‘R]

R’ = ‘R QSIZE-1 QSIZE-1 ‘R ‘R− 1 ‘R − 1 ‘R

FULL’ = ‘FULL false ‘F = QSIZE-2 ‘FULL false edge’
‘FULL

initialised and not empty empty
or not initialised(‘F = 0) (‘F > 0)

F’ = QSIZE-1 ‘F− 1 ‘F

FULL’ = false false ‘FULL

not empty and initialised empty or not initialised

return ‘DATA[‘F]

df

df

df

df

queue.slides - Parnas 19 July 3, 1996 12:56 pm

Informal Design Document for Queue12: Implementation 1 - Pascal

(1) DATA STRUCTURE

CONSTANTS

TYPES

VARIABLES

Abbreviation:

a predicate edge is true if the rear is just behind the front or front is at the top of the array and the
rear is at the first array element.

<qs> the set of possible values of the data structure.

(2) ABSTRACTION FUNCTION

af: maps from the data structures, qs, to abstract traces.
af(DATA,F,R,FULL)

Constant Name Definition

QSIZE 12

Type Name Definition

<qds> array[0..QSIZE-1] of integer

Type Definition/Name Variables Initial Values

<qds> DATA “Don’t Care”

0..QSIZE-1 F, R “Don’t Care”

<boolean> FULL “Don’t Care”

<boolean> old false

initialised, not empty and no
wraparound

Queue data stored between F and R in DATA

initialised, not empty with
wraparound

Queue data stored from F to 0 and then from QSIZE-1 to R

initialised, empty No data in queue

not initialised Not yet a queue

df

queue.slides - Parnas 20 July 3, 1996 12:56 pm

(3) PROGRAM FUNCTIONS

pf_Q12INIT

gpf_ADD(a) F won’t change and only DATA at new R can change

pf_REMOVE No change to DATA, old, or Rand

pf_FRONT NC(R,FULL)∧

pf_Name Arg#1 Signature

pf_Q12INIT changes the data structure

gpf_ADD <integer> changes the data structures based
on an integer and old value

pf_REMOVE changes the data structure

pf_FRONT
computes integer and changes the
data structure

F’ = 0

R’ = 1

FULL’ = false

DATA’ | true

old = true

Must wraparound, initialised Not a wraparound case, initialised Not initialised

edge case
not edge case

edge case not edge

case‘FULL ¬ ‘FULL ‘FULL ¬ ‘FULL

DATA’[R’] = ‘DATA[‘R] a a ‘DATA[‘R] a a ‘DATA[‘R]

R’ = ‘R QSIZE-1 QSIZE-1 ‘R ‘R− 1 ‘R − 1 ‘R

FULL’ = ‘FULL false ‘F = QSIZE-2 ‘FULL false edge’
‘FULL

initialised and not empty empty
or not initialised(‘F = 0) (‘F > 0)

F’ = QSIZE-1 ‘F− 1 ‘F

FULL’ = false false ‘FULL

not empty and initialised empty or not initialised

return ‘DATA[‘F]

d

df

df

df

queue.slides - Parnas 21 July 3, 1996 12:56 pm

Design Document for Queue12: Implementation 1 - Pascal

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

queue.slides - Parnas 22 July 3, 1996 12:56 pm

Design Document for Queue12: Implementation 1 - Pascal

(1) DATA STRUCTURE

CONSTANTS

TYPES

VARIABLES

Abbreviation:

edge (R = F + 1)∨ (F = QSIZE-1)∧ (R = 0)
‘edge (‘R = ‘F + 1) ∨ (‘F = QSIZE-1)∧ (‘R = 0)
edge’ (R’ = F’ + 1) ∨ (F’ = QSIZE-1)∧ (R’ = 0)

<qs> qds× 0..QSIZE-1× 0..QSIZE-1 × boolean× boolean

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

Constant Name Definition

QSIZE 12

Type Name Definition

<qds> array[0..QSIZE-1] of integer

Type Definition/Name Variables Initial Values

<qds> DATA “Don’t Care”

0..QSIZE-1 F, R “Don’t Care”

<boolean> FULL “Don’t Care”

<boolean> old false

df

df

df

df

queue.slides - Parnas 23 July 3, 1996 12:56 pm

Design Document for Queue12: Implementation 1 - Pascal

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

af: <qs> → <queue12>
af(DATA,F,R,FULL)

(3) PROGRAM FUNCTIONS

(¬ edge∨ FULL) ∧ (F ≥ R) ∧ old Q12INIT.ADD(DATA[F]).ADD(DATA[F −1]). … .ADD(DATA[R])

(¬ edge∨ FULL) ∧ (F < R)∧ old
 Q12INIT . ADD(DATA[F]). … .ADD(DATA[0]).ADD(DATA[QSIZE-1]). …

.ADD(DATA[R])

edge∧ ¬ FULL ∧ old Q12 INIT.

¬ old

df

queue.slides - Parnas 24 July 3, 1996 12:56 pm

Design Document for Queue12: Implementation 1 - Pascal

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

pf_Q12INIT

gpf_ADD(a) NC(F)∧ ∀j (j ≠ R’) [NC(DATA[j])] ∧ NC(a)∧

pf_REMOVE NC(DATA,R)∧

pf_FRONT NC(R,FULL, DATA, F) ∧

pf_Name Arg#1 Value

pf_Q12INIT <qs> → <qs>

gpf_ADD <integer> <qs> × <integer> → <qs>

pf_REMOVE <qs> → <qs>

pf_FRONT <qs> → <qs> × <integer>

F’ = 0

R’ = 1

FULL’ = false

DATA’ | true

old = true

(‘R = 0) ∧ old ∧ (‘R ≠ 0) ∧ old ¬ old

‘edge ∧
 ¬ ‘edge

‘edge ∧
¬ ‘edge

‘FULL ¬ ‘FULL ‘FULL ¬ ‘FULL

DATA’[R’] = ‘DATA[‘R] a a ‘DATA[‘R] a a ‘DATA[‘R]

R’ = ‘R QSIZE-1 QSIZE-1 ‘R ‘R− 1 ‘R − 1 ‘R

FULL’ = ‘FULL QSIZE=1 ‘F = QSIZE-2 ‘FULL QSIZE=1 edge’
‘FULL

(¬ ‘edge∨ ‘FULL) ∧ old ∧ (‘edge∧ ¬‘FULL)
∨ ¬ old(‘F = 0) (‘F > 0)

F’ = QSIZE-1 ‘F− 1 ‘F

FULL’ = false false ‘FULL

(¬ ‘edge∨ ‘FULL) ∧ old (‘edge∧ ¬‘FULL) ∨ ¬ old

DATA’ = ‘DATA ‘DATA

F’ = ‘F ‘F

return ‘DATA[‘F]

df

df

df

df

queue.slides - Parnas 25 July 3, 1996 12:56 pm

Design Document for Queue12: Implementation 1 - Pascal

(1) DATA STRUCTURE

CONSTANTS

TYPES

VARIABLES

Abbreviation:

edge (R = F + 1)∨ (F = QSIZE-1)∧ (R = 0)
‘edge (‘R = ‘F + 1) ∨ (‘F = QSIZE-1)∧ (‘R = 0)
edge’ (R’ = F’ + 1) ∨ (F’ = QSIZE-1)∧ (R’ = 0)
<qs> qds× 0..QSIZE-1× 0..QSIZE-1 × boolean

(2) ABSTRACTION FUNCTION

af: <qs> → <queue12>

af(DATA,F,R,FULL,old)

Constant Name Definition

QSIZE 12

Type Name Definition

<qds> array[0..QSIZE-1] of integer

Type Definition/Name Variables Initial Values

<qds> DATA “Don’t Care”

0..QSIZE-1 F, R “Don’t Care”

<boolean> FULL “Don’t Care”

<boolean> old false

(¬ edge∨ FULL) ∧ (F ≥ R)
∧ old

Q12INIT.ADD(DATA[F]).ADD(DATA[F −1]). … .ADD(DATA[R])

(¬ edge∨ FULL) ∧ (F < R)
∧ old Q12INIT . ADD(DATA[F]). … .ADD(DATA[0]).ADD(DATA[QSIZE-1]). …

.ADD(DATA[R])

edge∧ ¬ FULL ∧ old Q12INIT

¬ old

df

df

df

df

df

queue.slides - Parnas 26 July 3, 1996 12:56 pm

(3) PROGRAM FUNCTIONS

pf_Q12INIT

gpf_ADD(a) NC(F)∧ ∀j (j ≠ R’) [NC(DATA[j])] ∧ NC(a)∧

pf_REMOVE NC(DATA,R)∧

pf_FRONT NC(R,FULL, DATA, F)∧

pf_Name Arg#1 Value

pf_Q12INIT <qs> → <qs>

gpf_ADD <integer> <qs> × <integer> → <qs>

pf_REMOVE <qs> → <qs>

pf_FRONT <qs> → <qs> × <integer>

F’ = 0

R’ = 1

FULL’ = false

DATA’ | true

old = true

(‘R = 0) ∧ old ∧ (‘R ≠ 0) ∧ old ∧

¬ old‘edge ∧
 ¬ ‘edge

‘edge ∧
¬ ‘edge

‘FULL ¬ ‘FULL ‘FULL ¬ ‘FULL

DATA’[R’] = ‘DATA[‘R] a a ‘DATA[‘R] a a ‘DATA[‘R]

R’ = ‘R QSIZE-1 QSIZE-1 ‘R ‘R− 1 ‘R − 1 ‘R

FULL’ = ‘FULL false ‘F = QSIZE-2 ‘FULL false edge’ ‘FULL

(¬ ‘edge∨ ‘FULL) ∧ old ∧
(‘edge∧ ¬‘FULL) ∨¬ old

(‘F = 0) (‘F > 0)

F’ = QSIZE-1 ‘F− 1 ‘F

FULL’ = false false ‘FULL

¬ ‘edge∨ ‘FULL old ∧ (‘edge∧ ¬‘FULL) ∨ ¬ old

return value = ‘DATA[‘F]

df

df

df

df

queue.slides - Parnas 27 July 3, 1996 12:56 pm

Informal Design Document for Queue12: Implementation 2 - Pascal

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

queue.slides - Parnas 28 July 3, 1996 12:56 pm

Informal Design Document for Queue12: Implementation 2 - Pascal

(1) DATA STRUCTURE

CONSTANTS

TYPES

VARIABLES

Abbreviation

<qs> qds× 0..QSIZE-1

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

Constant Name Definition

QSIZE 12

Type Name Definition

<qds> array[0..QSIZE-1] of<integer>

Type Definitions/Name Variables Initial Values

<qds> DATA “Don’t Care”

-1 .. QSIZE Size -1

df

queue.slides - Parnas 29 July 3, 1996 12:56 pm

Informal Design Document for Queue12: Implementation 2 - Pascal

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

af:<qs>→ <queue12>
af(DATA,Size)

(3) PROGRAM FUNCTIONS

Size > 0 initialised queue with newest element in DATA[0]

Size = 0 Q12INIT

Size< 0

df

queue.slides - Parnas 30 July 3, 1996 12:56 pm

Informal Design Document for Queue12: Implementation 2 - Pascal

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

pf_Q12INIT Set Size to zero.

gpf_ADD(a) NC(a) ∧

pf_REMOVE NC(DATA) ∧

pf_FRONT NC(DATA,Size) ∧ return =‘DATA[Size-1]

Name Arg#1 Signature

pf_Q12INIT changes the data structure

gpf_ADD (a) <integer>
changes data structure depending on inte-
ger

pf_REMOVE changes data structure

pf_FRONT changes data structure and returns integer

Queue full Queue not full

DATA’ | NC(DATA) shift data up and insert a at DATA[0].

Size’ = ‘Size ‘Size + 1

Queue empty Queue not empty

Size’ = ‘Size ‘Size - 1

df

df

df

df

queue.slides - Parnas 31 July 3, 1996 12:56 pm

Informal Design Document for Queue12: Implementation 2 - Pascal

(1) DATA STRUCTURE

CONSTANTS

TYPES

VARIABLES

Abbreviation

<qs> qds× 0..QSIZE-1

(2) ABSTRACTION FUNCTION

af:<qs>→ <queue12>
af(DATA,Size)

Constant Name Definition

QSIZE 12

Type Name Definition

<qds> array[0..QSIZE-1] of<integer>

Type Definitions/Name Variables Initial Values

<qds> DATA “Don’t Care”

-1 .. QSIZE Size -1

Size > 0 initialised queue with newest element in DATA[0]

Size = 0 Q12INIT

Size< 0

df

df

queue.slides - Parnas 32 July 3, 1996 12:56 pm

(3) PROGRAM FUNCTIONS

pf_Q12INIT Set Size to zero.

gpf_ADD(a) NC(a) ∧

pf_REMOVE NC(DATA) ∧

pf_FRONT NC(DATA,Size) ∧ return =‘DATA[Size-1]

Name Arg#1 Signature

pf_Q12INIT changes the data structure

gpf_ADD (a) <integer>
changes data structure depending on inte-
ger

pf_REMOVE changes data structure

pf_FRONT changes data structure and returns integer

Queue full Queue not full

DATA’ | NC(DATA) shift data up and insert a at DATA[0].

Size’ = ‘Size ‘Size + 1

Queue empty Queue not empty

Size’ = ‘Size ‘Size - 1

df

df

df

df

queue.slides - Parnas 33 July 3, 1996 12:56 pm

Design Document for Queue12: Implementation 2 - Pascal

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

queue.slides - Parnas 34 July 3, 1996 12:56 pm

Design Document for Queue12: Implementation 2 - Pascal

(1) DATA STRUCTURE

CONSTANTS

TYPES

VARIABLES

Abbreviation

<qs> qds× 0..QSIZE-1

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

Constant Name Definition

QSIZE 12

Type Name Definition

<qds> array[0..QSIZE-1] of<integer>

Type Definitions/Name Variables Initial Values

<qds> DATA “Don’t Care”

-1 .. QSIZE Size -1

df

queue.slides - Parnas 35 July 3, 1996 12:56 pm

Design Document for Queue12: Implementation 2 - Pascal

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

af:<qs>→ <queue12>
af(DATA,Size)

(3) PROGRAM FUNCTIONS

Size > 0 Q12INIT . ADD(DATA[Size-1]). … .ADD(DATA[0])

Size = 0 Q12INIT

Size< 0

df

queue.slides - Parnas 36 July 3, 1996 12:56 pm

Design Document for Queue12: Implementation 2 - Pascal

(1) DATA STRUCTURE

(2) ABSTRACTION FUNCTION

(3) PROGRAM FUNCTIONS

pf_Q12INIT Size’ = 0

gpf_ADD(a) NC(a) ∧

pf_REMOVE NC(DATA) ∧

pf_FRONT NC(DATA,Size) ∧ return =‘DATA[Size-1]

Name Arg#1 Signature

pf_Q12INIT <qs> → <qs>

gpf_ADD (a) <integer> <qs>× <integer> → <qs>

pf_REMOVE <qs> → <qs>

pf_FRONT <qs> → <qs> × <integer>

‘Size = QSIZE∨ ‘Size = 1 ‘Size≠ QSIZE∧ Size≥ 0

DATA’ | NC(DATA)

∀j(1 ≤ j ≤ ‘Size)[DATA’[j] = ‘DATA[j-1]] ∧
∀j((‘Size+1) ≤ j ≤ QSIZE-1) [NC(DATA[j])] ∧

DATA[0]’ = a

Size’ = ‘Size ‘Size + 1

‘Size ≤ 0 ‘Size > 0

Size’ = ‘Size ‘Size - 1

df

df

df

df

queue.slides - Parnas 37 July 3, 1996 12:56 pm

Design Document for Queue12: Implementation 2 - Pascal

(1) DATA STRUCTURE

CONSTANTS

TYPES

VARIABLES

Abbreviation

<qs> qds× 0..QSIZE-1

(2) ABSTRACTION FUNCTION

af:<qs>→ <queue12>
af(DATA,Size)

Constant Name Definition

QSIZE 12

Type Name Definition

<qds> array[0..QSIZE-1] of<integer>

Type Definitions/Name Variables Initial Values

<qds> DATA “Don’t Care”

-1 .. QSIZE Size -1

Size > 0 Q12INIT . ADD(DATA[Size-1]). … .ADD(DATA[0])

Size = 0 Q12INIT

Size< 0

df

df

queue.slides - Parnas 38 July 3, 1996 12:56 pm

(3) PROGRAM FUNCTIONS

pf_Q12INIT Size’ = 0

gpf_ADD(a) NC(a) ∧

pf_REMOVE NC(DATA) ∧

pf_FRONT NC(DATA,Size) ∧ return =‘DATA[Size-1]

Name Arg#1 Signature

pf_Q12INIT <qs> → <qs>

gpf_ADD (a) <integer> <qs>× <integer> → <qs>

pf_REMOVE <qs> → <qs>

pf_FRONT <qs> → <qs> × <integer>

‘Size = QSIZE ‘Size≠ QSIZE

DATA’ | NC(DATA)

∀j(1 ≤ j ≤ ‘Size)[DATA’[j] = ‘DATA[j-1]] ∧
∀j((‘Size+1) ≤ j ≤ QSIZE-1) [NC(DATA[j])] ∧

DATA[0]’ = a

Size’ = ‘Size ‘Size + 1

‘Size ≤ 0 ‘Size > 0

Size’ = ‘Size ‘Size - 1

df

df

df

df

