
 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

1 resp.slides

The Professional Responsibilities
of Software Engineers

David Lorge Parnas

Abstract
RegisteredEngineersare expectedto be aware of their
responsibilitiesas professionals.Those who practice
SoftwareEngineeringoftenenterthatprofessionwithout
either an engineering education or professional
registration.The primary responsibilityis to make sure
that their products are “fit for use”.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

2 resp.slides

PersonalResponsibility, SocialResponsibilityand
Professional Responsibility

Is there a difference?

Can they conflict?
• Personal Responsibilities are generalobligations towards

other individuals; most are shared by all persons
 (e.g. honesty, concern for others).

• Social Responsibilities areresponsibilitiestowardssociety
as a whole. We have a debt to repaybecausesocietyhas
supportedus when we needed it. (e.g. environmental
activism, peace activism, national defence)

• Professional Responsibilities areadditionalresponsibilities
shared by members of a particular profession
(e.g medicine, journalism, or engineering)
Usually a code of responsibilities exists.

Professional responsibilities include, but are not
limited to, contractual obligations to an employer.

Theseobligationsmayappear at timesto conflict with
Personal and Social responsibility.

Theprimary responsibilityof anengineeris alwaysto
the safety and well-being of the public.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

3 resp.slides

Computers are Everywhere

Almost all of today’s engineeringproductswere
designed using computers.

An increasing number of engineeringproducts
contain computers.

Almost all of today’s software is wrong!
There is growing concern about the quality of
software.

Thereis anintenseeffort to improve theprocessof
programming.

References
(1) Neumann,P.G.“ComputerRelatedRisks” ISBN 0-

201-55895- X, 1995, ACM Press, Addison Wesley
(2) Wiener,L.R. “Digital Woes,Why We ShouldNot

Dependon Software”,1993,ISBN 0-201-62609-8,
Addison Wesley

(3) Forrester,Tom,MorrisonPerry,“ComputerEthics:
Cautionary Tales and Ethical Dilemmas in
Computing, The MIT Press.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

4 resp.slides

Why is Software of Growing Importance?

Computers are increasingly powerful yet
decreasingin cost becausethey can be mass
produced.

Massedproducedmeanspotentially good for
everything but not good for anything.

Softwareis neededto tailor generalpurposetool
to specific use.

Few hardware designjobs, but many software
design jobs.

Hardwaredesignedwith disciplineby engineers
and errors are relatively rare.

Software designedintuitively by all kinds of
people; errors the normal case.

Difficulty of software always underestimated.
Systematic methods are “not needed”.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

5 resp.slides

Personal Responsibility, Social Responsibility
and Professional Responsibility

An Illustration - SDI (Star W ars):
Serviceon the “Committeeon Computingin Support
of Battle Management”.

Some questions that arose:
(1) Was it honest? (personal responsibility)

(2) Had I made aprofessional commitment?
Wasouractivity designingasystemthatwouldmeet
theneedsof thecustomerasrequiredby professional
codes?
What should a professional do if the answers were
“yes” and “no”?

(3) Was this project good forsociety?
Should I explain my views to the public?

Some regarded a “Yes” to (3b) as unprofessional.
The conflict in (2) was resolved by a detailed
explanation.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

6 resp.slides

Why would I work on Nuclear Plants but not
Star Wars?

Above a question of professional responsibility.
Questionsof “Peace”areissuesof socialresponsibility.
Honest claims, personal responsibility.

A Comparison of Technical Problems

Problem Characteristics SDI NPGS
Must dealwith unknown physical
properties, deliberate deception

YES NO

Network with unreliable channels YES NO

Can be tested under realistic
operating conditions

YES NO

Possibility of humanintervention
during use

YES NO

Short real-time deadlines YES NO

Frequent addition of devices YES NO

System easily overloaded in use YES NO

Component failures, statistically
correlated

YES NO

Precise synchronisation needed YES NO

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

7 resp.slides

The Social Responsibility of
Scientists And Engineers

“In the land of the blind,
the one eyed man is king”.

In a world increasinglydependenton scienceand
technology, ScientistsandEngineersaretheone-eyed
people.

The majority of our decision-makers are blind.

Consider the following public issues:
• Canwe reduceour energy expenditureswithout greatdisruption

in people's lives?

• How urgentis theneedto reducethelevel of greenhousegasses?

• Should we build more nuclear power generating stations?

• Is it safe to allow nuclear power generatingstations to be
controlled by computers?

• Cantechnologyhelp us to reducethe amountof the paperthat
we use? Should we do that?

• Is it safe to allow computers to control cars and trucks?

Decisionswill be taken by non-specialists,but the
input will comefrom peoplelike us. We must give
them complete and accurate information.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

8 resp.slides

The Social Responsibilities of
Scientists & Engineers

Scienceand technologyare the “black magic” of our
age.

We use arcane rituals and obscure terminology.

Thepublic thinksthatsciencecansolveany problemif
given enough funds.

Public officials share this attitude. They fall for
scientific fads.

Buzzwords and big promises, favoured over solid
scientific work.

The rewards often go to the illusionists.

The successfuldo not speak out. The others are
ignored (“sour grapes”).

Most of us “go along” to get funds.

Don’t wehavea responsibility to seethat society’s
funds are well used?
In your careeryou will oftenhave to decidewhetheror
not to participatein a projectand,if you decidenot to
participate,whether you should make your decision
public.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

9 resp.slides

The Professional Responsibilities of Engineers

Unfortunately, Software Engineers are not always
Engineers.

“Software Engineering” is a shallow course on
programming,taught in a sciencedepartment,not a
professional programme in Engineering

Many “software engineers” have no technical
education.

Many could not be Professional Engineers.

Many confusesoftwareengineeringwith configuration
management.

An Engineer is someone who uses advanced
knowledgeof science,mathematics,andtechnologyto
build objects for use by others.

Most programmers or software engineers, are
Engineers, underqualified, unlicensed, and often
unprofessional.

They areunawareof theirprofessionalresponsibilities.

Programmersneed to learn about the professional
responsibility of engineers.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

10 resp.slides

Why do wehave licensedProfessionalEngineers?

An old system introduced because:
• Some productspotentially dangerous.Incompetent

designs a danger to public.

• Purchasersand someemployers are often unableto
judge the competence of designers.

• Competent,conscientious,disciplined professionals
want public to distinguish between themselves and
others. Bad work by a few damages the reputations
and business prospects of all.

• Financial pressuresmay tempt employers to “cut
corners” . We are protected better when professional
obl igations go beyond loyalty or obedience to an
employer. Professionals do say “No”.

Don’t all of these reasons apply to software
construction?

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

11 resp.slides

What is the Professional Engineering system?

ProfessionalEngineeringSocietieswereestablished
by legislation to assurecompetenceand awareness
of professional responsibilities.

Regulations require that certain products be
producedor approved by a recognisedProfessional
Engineer.

Thereis a separatecommitteeto accreditprograms.
Accreditation is a very serious process.

Graduatesof accreditedprogramshave an easier
path to recognition as a Professional Engineer.

An exam on responsibilities is required in any case.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

12 resp.slides

Why are “Software Engineers” different?

The result of a “software crisis” (optimism).

Originally dealtwith asa scientificproblem.Thebasis
of software engineering was not well understood.

First meetingsattendedby many mathematiciansand
scientists, few engineers.

Many engineerswere still blissfully unaware of the
importance of computers in their profession.

The word is “Engineering” usedto indicatepractical
concerns, not a profession.

Professional societies did not take it seriously.

Software Engineeringhas developed outside of the
Engineering Community.

It has been left to Computer Sciencedepartments,
taught by people who are not Engineers.

Becausebadly designedcomputerprogramsare hard
to manage,emphasishasbeenonprojectmanagement,
project scheduling, version control, etc.

Today, the engineeringsocietiesare beginning to do
what they were always required to do.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

13 resp.slides

What are the obligations of the engineer?

The following arethe responsibilityof any kind of
engineer:
(1) Accept individual responsibility.
• Following orders does not justify approving bad designs.

• One cannot always be a “team player”.

• Professional standards have priority over other pressures.

(2) Solve the real problem
• Look beyond the customer’s opinions.

• Have a precise description of a problem.

• Get that description reviewed before building.

(3) Be honest about capabilities
• Don’t offer technical solutions where there are none.

• Don’t do studies when you already know the answer.

(4) Produce reviewable designs
• No individual is infallible.

• Document to make reviewing easy.

(5) Maintainability
• Producea productthatcanbemaintainedwithout you. - It’s not

your personal product.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

14 resp.slides

Professional Practice in Software Development

Some responses to a critical consultant:
• “Of course it’s wrong, but that is what my boss told me to do.”

• “We alreadyknow the answer, but they will pay us $1,000,000
for the study.

• “It’ s not the right way, but it’s the customer’s suggestion.”

• “At XYZ corporation,we don’t tell our customersthat they are
wrong, we take their contracts.”

• “That’s not the real problem, but they asked us to do it.”

• “We can’t give them what they need,but we’ll do the bestwe
can.”

• “We’ve got a deadline;we’ll worry aboutmaintainabilitywhen
we get the maintenance contract.

• “We don’t like people criticising our designs!”

Theseremarksshowedthatthespeakerswereunaware
of the professional responsibilities of engineers.

Some had not heard of those responsibilities.

Some had no such excuse!

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

15 resp.slides

A Simple Example: Pacemakers

Their importance to the user is obvious!

They are also important to those nearby.

They are controlled by software.
• Many modes of operation

• Computer controlled telemetry system

• Data collection

• “Programmable” by remove control

• “When needed” intervention.

• Rate responds to body activity.

• Packaged in a small sealed unit

• Must survive in a “hostile environment”

Clearly the type of device that shouldbe built by
engineers.

The program is critical and should be well
documented and reviewable.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

16 resp.slides

What Should be Done for Pacemaker Software?

(1) Programmershouldhavea precisedescriptionof the
environment and requirements

(2) Black box descriptionshouldhavebeenproducedfor
review.

(3) Document should have been reviewable and reviewed
by Cardiologists.

(4) The codeshouldhavebeendocumentedin a way that
permitted systematic review and revision.

(5) Codeshouldhavebeensubjecttosystematicinspection.

(6) Doctor shouldhavebeenprovide with well-organised
precisedocumentationthat explainedthe behaviourof
the device to him.

All of these things would be expected of a
professional engineer.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

17 resp.slides

A Personal Anecdote

Pacemaker “refused” the surgeon’s command;neither
surgeon nor technician understood why.

I found theexplanationin a footnoteafter severalhours
of reading

It took 30 minutes to find it the second time.

Engineerresponsiblecouldexplain thehardwareaspects
in great detail.

Hereferredusto aprogrammer, whocouldnotbefound,
to explain the code.

Programming had been viewed as a trivial task;
Responsible engineer did not review it.

As a result of inadequate review, there are
fundamental weaknesses.
• Motion sensor does not measure physical activity

• Expected rate adjustment is inflexible.

The problem solved was not the real problem.

This was a typical software product.
The softwarewaswritten asit would have beenwritten
25 years ago.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

18 resp.slides

Software used by Professional Engineers

ProfessionalEngineerstake responsibility for
their products, but, ...
• to designthoseproductsthey usesoftware that

comes with a disclaimer instead of a warranty,

• ProfessionalEngineersbelong to a society that
enforces codes of professional behaviour,

• they mustusetools producedby peoplewho do
not belong to such a society.

This cannot be a stable situation!

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

19 resp.slides

The “Know How” isn’t Ther e!

If we look at otherareasof engineering,we know
what software engineers should do.

If we look at currentpractice,thosethingsarenot
done.

It’s not just a matter of lack of will.

It’s not just a matter of lack of awareness.

Most programmersdo not know how to do the
things that they should do.

They do not know how to:
• documentrequirementsin awaythatcanbereviewed

by subject matter experts,

• document code precisely and completely,

• inspect code systematically.

We are trying to give you that “know how”.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

20 resp.slides

APEO Software Guidelines

Engineers are responsible for verifying that results
obtained by using software are accurate and acceptable.

Theengineershouldensurethatprofessionalengineering
verification of the software’s performance exists.

Software reliability requires a disciplined approachto
quality assurance.

Functional requirementsthat cannotbe verified, or are
inadequatelydefined,ambiguousor infeasiblewill leadto
the development of an inadequate software product.

Engineersowe a duty of careto theclient andthepublic.
That duty of care may be breachedif engineersare
negligentin renderingservicesto theclient,andthey may
be liable for damages...That liability may arise if a
computerprogramdevelopedby anengineerandusedby
a client or third party is defective and causes harm...

Quality Characteristics
Functionality, Maintainability, Reliability, Reviewability,
Safety, Usability, Completeness, Modifiability,
Robustness

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

21 resp.slides

Impr oving Professionalism in
Software Development

Thr ee steps:
(1) Work with Professional Engineering societies.

(2) Develop better educational programmes.

(3) Develop accreditation procedures for Software
Engineering programmes.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

22 resp.slides

Why discuss the design process?

We can’t tell people how to think!
Nobody will follow the process we define!
but,
We all look for guidance in difficult situations

• Where do we start?

• What should we write?

• When are we done?

The process can affect the quality of the product.
Progressmeasurementrequires a model of the
process.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

23 resp.slides

Why is software commonly the product
of an irrational pr ocess?

We start to build before we know what we want.

We learn what we want as we start to build.

Sometimes the basis of our work is a new
technology or implementation concept.

We make decisionswithout being able to justify
them relative to a statement of goals.

We simply do not understandenoughto berational
designers.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

24 resp.slides

Why do we want a rational process?

We wantto derive programsfrom their requirements
to be sure that they meet those requirements.

We wantto besystematic,sothatwe don’t overlook
anything.

We want to beableto give a rationalexplanationof
our work to help others understand.

We want our work to be more easily understood,
more safely modified.

We want to make good decisions,decisionsthat
won’t have to be reversed or revised.

We want to look good.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

25 resp.slides

Bad News:

Any proposed“rational process”will alwaysbe
an idealisation - We will never really do it.

Good News:

We can fake it!
It pays to fake it!

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

26 resp.slides

Why is any proposed rational process an
idealisation, a dream?

(1) Customersdonotknowwhattheywantatthestartof
the design process.

(2) Even if you knew what you wanted, there are
unknowns in the environment that become known
only during the development.

(3) The implications of some details only become clear
during development.

(4) One must then either backtrack or produce a less-
than-ideal design.

(5) At the start of the process, the details are
overwhelming.

(6) There are always changes in both intent and
environment.

(7) One can only avoid errors by avoiding humans.

(8) We often have strong preconceptions about how to
build something.

(9) Reuse of previous work is encouraged.

(10)Someprojectsaredrivenby thedesireto exploitnew
technology or machines.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

27 resp.slides

Why should we care about a process we cannot
follow?

Documentation that simulates the ideal can be
produced.

Understanding the ideal process guides the
designers.

Having the model helps us to approach it.

Large organisations benefit from a standard process:
• better reviews

• better progress measurement

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

28 resp.slides

A Rational Design Process

(1) A. Establishanddocumentsystemrequirements(black-
box view)

(2) Select Hardware Components and Document the
System Design

(3) Document the Desired Software Behaviour

(4) Design and document the module structure

(5) Design and document the module interfaces

(6) Design and document the uses hierarchy

(7) Establish process structure guidelines

(8) Foreachmodulethatis toobig to throwaway,repeat
4...8, then
(8.1) Design the module internally

(8.2)Code to the internal design

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

29 resp.slides

Why do we need requirements documents?

How will it be used?

Decide what to build before starting to build it.

Provide an organisedreferencedocumentfor the
software engineers.

Provide a reference document for the Quality
Assurance Group.

Specify the constraints for future improvement
actions.

Provide input to thosewho write usermanualsand
other less-formal documents.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

30 resp.slides

What goes in the system requirements document?

• Everything you need to know to design the
system, no more--no less.

• Everystatementshouldbevalid for all acceptable
product.

• If a productsatisfiesevery statement,it shouldbe
acceptable.

• Requirements are “life cycle” requirements.

• Requirements are not “ostrich-eye” requirements.

• Should be an engineering document, not an
introduction.

• Should provide descriptions, not stories.

• Areas of incompleteness should be specified.

• Only monitored and controlled environmental
variables should be mentioned

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

31 resp.slides

What goes in the system design document?

• The characteristicsof the computerhardware
input and output registers.

• The functional characteristicsof the peripheral
devices that sensethe monitoredvariablesand
control the control variables.

Therelationshipbetweentheinput/outputvariables
and the system environmental variables.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

32 resp.slides

What about the software requirements?

• Everything you need to know to write the
software, no more--no less.

• Everystatementshouldbevalid for all acceptable
product.

• If a productsatisfiesevery statement,it shouldbe
acceptable.

• Requirements are “total life cycle” requirements.

• Requirements are not “ostrich-eye” requirements.

• Should be an engineering document, not an
introduction.

• Should provide descriptions, not stories.

• Areas of incompleteness should be specified.

This information is provided by the two previously
described documents.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

33 resp.slides

Decomposing the product into modules

What is a module guide?

• A documentdescribing the responsibilitiesof
individual modules.

Why do we need a module guide?

• To avoid duplication.

• To avoid gaps.

• To help an ignorant maintainer.

What criteria is used?

• Information Hiding - Separation of Concerns

• Things that can change separately are separated.

What does the module guide show?

• Secrets.

• Not Interfaces.

• Not Roles.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

34 resp.slides

Documenting individual module interfaces

Why do we need module interface documents?

• Allows independent development of modules.

• Reduces unintended links between modules.

• Reducesthe amountof information one needsto
know.

How do we provide an abstract interface description?

• Focus entirely on externally visible programs.

• Make assertions about the effects of traces.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

35 resp.slides

The design of the “uses” relation

What is the “uses” relation?
• The decision about which programsa program

may use

What are the goals of the “uses design?
• Phased development

• Fall back during development and delivery

• Fail soft product

• Minimise need for scaffolding

• Provide for reduced capability (cheaper) products

How do you document the uses relation?
• Boolean matrix

• Picture

The “uses” relation should be hierarchical
It will be modified during development.

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

36 resp.slides

Designing the implementation
of individual modules

What should be in the module design document?
• Internal data structures (often created by

submittals) may be implemented using other
modules.

• Function/LD-relation of each access program.

• Abstraction Function: data→ abstract value.

What will the design document be used for?
• This documentshould be available to guide the

coders.

• This document is the basis for outside review.

• This document is a guide to future maintainers

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

37 resp.slides

Documentation:

 Necessary evil or designer's medium

Most softwaredesignersview documentationasa
necessary evil.

Thosecharged with maintenanceagreethat what
they get is evil (or at least misguided).

Rush to Code: Software just seems to happen.

“Pre-ImplementationPhases”--they producea lot
of blah blah blah.

Resolving the dilemma--Documentationthat is
both maintenance document and design medium

• Used as a medium for abstract design

• Used for design reviews

• Used as a manual in the design phase

• Used to bring new staff up to speed

• Used by the maintainer

 McMaster University

September 10, 1999 11:31

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

38 resp.slides

The Rational Design Process

We will never follow it, but:

We can produceall the documentsthat we would
have produced if we had.

Those are the documents that we want.

The “myth” of the rational designercame about
becausewewantedtherealityof therationaldesign
documents.

We arenot misleadingstudents,unlesswe pretend
thatwe completethosedocumentsin theorderthat
they are described.

