
 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

1 testing.slides

Testing Software

What should we do? What can we do?

David Lorge Parnas
Telecommunications Research Institute of Ontario

Communications Research Laboratory
Department of Electrical and Computer Engineering

McMaster University, Hamilton, Ontario Canada L8S 4K1

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

2 testing.slides

Why is Software A Special Concern?

(1) It never works the first time it is really used.

(2) It has no natural internal boundaries.

(3) It is sensitive to minor errors - there is no meaning to
“almost right”. (chaotic behaviour)

(4) It is difficult to test because interpolation is not valid.

(5) There are “sleeper bugs”.

These are all manifestations of complexity.

They are “inherent” properties, not signs of
immaturity in the field.

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

3 testing.slides

Novice Appr oaches To Testing

(1) Eureka! It ran.

•one test means its done

•usually a very simple case.

(2) A number of tests where the answers are
easily checked.

(3) Let it run and run and run.

(4) If an error is noticed, fix and go to 2.

What’s Wrong with This?

5) Much of the program may never be tested

6) All we get is a bunch of anecdotes

How Muc h Testing is Enough?

How important is the product?

How do you want to measure quality?

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

4 testing.slides

Some Better Appr oaches to T esting

1) Test uses every statement at least once.

2) Test takes every exit from a branch at least once.

3) Test takes all possible paths through the program at
least once.

These are minimal requirements, but...

They mistakenly assume that program state is more
important than data state.

Additional Rules

(4) Consider all typical data states

(5) Consider all degenerate data states

(6) Consider extreme cases

(7) Consider erroneous cases.

(8) Try very large numbers

(9) Try very small numbers

(10)Try numbers that are close to each other.

(11)Think of the cases thatnobody thinks of.

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

5 testing.slides

Who Does the T esting?

You are a fool if you don’t test your program!

Your customer/boss is a fool if they don’t test your
program?

Many software companies have testing specialists
in quality assurance companies.

“Cleanroom” model says that you are not allowed
to test your program.

• Increased care yields big improvements in quality.
• Statistical testing is done by others.

The basic issues:

Human beings all tend to overlook the same cases.

How can random testing be better than planned
testing?

Can we have planned random testing?

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

6 testing.slides

Three Kinds of T esting

Black Box Testing
•Based on Specification Alone
•Cases chosen without looking at code

Clear Box Testing
•Test Choice Based on Code
•Use coverage criteria described earlier

Grey Box Testing
•Intended for modules with memory
•Look at Data structure
•Assures that state coverage is good
•May use design documentation as a further check

All have their place
•Black Box testing can be re-used with new design
•Black Box testing can be independent of designer
•Clear Box testing tests the mechanism
•Grey Box testing gives better coverage for black box with
memory. Avoids some duplicate tests

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

7 testing.slides

Another T esting Method Classification

Planned Testing
•Clear Box - based on code coverage criteria
•Black Box - based on external case coverage

Wild Random Testing
•Pick arguments using uniform random distribution
•Can find cases nobody ever thinks of
•Can violate assumptions yielding spurious errors
•reliability figures can be obtained but aren’t meaningful

Statistical Random Testing.
•Requires an operational profile
•Provides meaningful reliability figures
•Only as good as the operational profile.

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

8 testing.slides

Hierar chical T esting P olicies

Testing the whole system at once is a disaster.

Finding the fault is a nightmare.

Test Small Units first.

Integrateafter components have passed all tests.

Test lower levels of uses hierarchy before using
them.

Bottom Line:

A delay before integration will save time after
integration.

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

9 testing.slides

MEASURES OF SOFTWARE QUALITY

We must assume the existence of a specification

•We need the ability to tell “right” from “wrong”

Correctness:

Does the software always meet the specification?

Reliability:

The probability of correct behaviour is?

Trustworthiness:

Is there a low probability that catastrophic flaws
remain after all verification.

Each of these measures is different, each requires a
different verification method.

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

10 testing.slides

WHEN SHOULD WE USE EACH OF THESE
QUALITY MEASURES?

Correctness:

Rarely need it!

Nice to reach for, hard to get.

To a perfectionist, all things are equally
important.

Not our real concern, we accept imperfections.

Use formal methods and rigor ous pr oof .

If you have a small finite state space, you can do
an exhaustive search.

Binary Decision Diagrams, (BDDs) handle
slightly bigger cases.

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

11 testing.slides

WHEN SHOULD WE USE EACH OF THESE
QUALITY MEASURES?

Reliability:

when we can consider all errors are equally
important,

when there are no unacceptable failures,

when operating conditions are predictable,

when we can talk about the expected cost,

when your concern is inconvenience,

when we want to compare risks.

Use Testing, both Statistical and Planned.

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

12 testing.slides

WHEN SHOULD WE USE EACH OF THESE
QUALITY MEASURES?

Trustw or thiness:

when you can identify unacceptable failures,

when trust is vital to meeting the requirements,

when there may be antagonistic “users”.

We often accept the systems that are unreliable.

We do not use systems that we dare not trust.

Testing does not work for trustworthiness.

Use formal documentation and systematic
inspections.

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

13 testing.slides

WHAT ARE THE LIMITS OF SOFTWARE
TESTING?

Testing can show the presence of bugs but
never their absence. (E.W. Dijkstra)

•False in theory, but true in practice,

It is impractical to use testing to demonstrate
trustworthiness.

Onecan use testing to assess reliability.

Two sides of a coin:
•I would not trust an untested program!

•At Darlington we found serious errors in
programs that had been tested for years!

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

14 testing.slides

WHAT ARE THE LIMITS OF SOFTWARE
TESTING?

1) It is not usually practical to prove
correctness by testing.

2) Testing cannot predict availability.

3) Reliability predictions based on old
versions are not valid.

4) Testers make the same assumptions as
the programmers.

5) Planned testing is a source of anecdotes,
not data (H.D. Mills).

6) Self-tests test for decay, but not built-in
defects.

Formal Methods complement testing.

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

15 testing.slides

Even in “Blac k Box” testing, what’ s
inside does make a diff erence!

The number of tests needed to identify a finite
state machine depends on an upperbound for the
number of states.

The length of a test-trajectory will depend on the
memory characteristics of the system.

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

16 testing.slides

WHAT DOES IT MEAN TO TALK ABOUT
SOFTWARE RELIABILITY?

Software is not a random process.

It is the input data that introduce randomness.

“Software Reliability” is a measure of the
input distribution through a boolean filter.

Software cannot be assessed as a set of
components.

Software + Hardware must be assessed as
a single component.

Formal Methods contribute directly to
trustworthiness and correctness but less directly
to reliability because of the importance of the
input distribution.

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

17 testing.slides

MEANINGLESS MEASURES USED FOR
SOFTWARE RELIABILITY

1) The number of errors per 1000 llines.

2) Time derivatives of the number of errors per line.

It is the failure rate that matters.

Formal methods do help the first two!

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

18 testing.slides

How much testing is needed to assess reliability?

1) Assume that we have the right input distribution
(difficult). We will use tests selected randomly from
this distribution.

2) Let 1/h be the required reliability.

3) What is the probability of passing N properly selected
tests if each test would fail with probability 1/h?

M = (1 - 1/h)N

4) M is the probability that a marginal product would
pass a test sequence of length N.

5) Some examples for h = 1000
•N = 500, M = 0.606
•N = 1000, M = .36700
•N = 5000, M = .00672

6) Some examples for h = 1,000,000
•N = 1,000, 000, M = .36788
•N = 5000000, N = .00674

Critical Systems, systems with high reliability
requirements, are much harder to test.

Expert opinion says you can’t do it.

Some companies use users to get more tests.

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

19 testing.slides

Real-time systems are har der to test
than batc h (memor y free) systems

In real-time systems, a test is a trajectory,
not an input state.

The trajectory must be long enough that
sleeper bugs are revealed.

There must be an upper limit to the memory
of the system.

Systems must be structured with testing in mind.

Most of the memory must be periodically
reinitialised.

Testing must be repeated for each mode of the
remaining memory.

Defining the probability distribution of
trajectories is the hardest part.

Formal methods are more important in
real-time applications

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

20 testing.slides

Conc lusions

1) Safety-Critical systems require both inspection
and testing.

2) Engineering training is essential.

3) Engineers see testing and mathematical analysis
as complementary and both are necessary.

Let’s worry about first-things first.

If we cannot use these methods for documentation and
inspection, they won’t be good for the more advanced
applications.

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

21 testing.slides

The Critical-Software TRIPOD

1) Precise, Organised, Mathematical Documentation
and Extensive Systematic Review.

2) Extensive Testing

•Systematic Testing-quick discovery of gross errors

•Random Testing -discovery of shared oversights and
reliability assessment

3) Qualified People and Approved Processes.

 McMaster University

October 8, 1996

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

22 testing.slides

What Should Y ou Do?

•Take Testing Seriously.

•Make a Test Plan

•Keep Complete Logs.

•Think about what you really know after a
test has been passed.

