=  McMaster University =

Testing Software

What should we do? What can we do?

= McMaster University =

David Lorge Parnas
Telecommunications Research Institute of Ontario
Communications Research Laboratory
Department of Electrical and Computer Engineering
McMaster University, Hamilton, Ontario Canada L8S 4K1

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

testing.slides October 8, 1996

Why is Software A Special Concern?

(1) It never works the first time it is really used.
(2) It has no natural internal boundaries.

(3) Itis sensitive to minor errors - there is no meaning
“almost right”. (chaotic behaviour)

(4) Itisdifficult to test because interpolation is not val
(5) There are “sleeper bugs”.

These are all manifestations of complexity.

They are “inherent” properties, not signs of
immaturity in the field.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

2 testing.slides October 8, 1996

to

d.



=  McMaster University =

Novice Appr oaches To Testing

(1) Eurekal! It ran.
e0ne test means its done

susually a very simple case.

(2) A number of tests where the answers a
easily checked.

(3) Letitrun and run and run.
(4) If an error is noticed, fix and go to 2.
What's Wrong with This?

5) Much of the program may never be tested
6) All we get is a bunch of anecdotes

How Muc h Testing is Enough?

How important is the product?
How do you want to measure quality?

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

testing.slides October 8, 1996

€

= McMaster University =

Some Better Appr _oaches to T esting

1) Test uses every statement at least once.
2) Test takes every exit from a branch at least onc

3) Test takes all possible paths through the progra
least once.

These are minimal requirements, but...

They mistakenly assume that program state is
important than data state.

Additional Rules

(4) Consider all typical data states

(5) Consider all degenerate data states

(6) Consider extreme cases

(7) Consider erroneous cases.

(8) Try very large numbers

(9) Try very small numbers

(10)Try numbers that are close to each other.
(11)Think of the cases thabbody thinks of.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

4 testing.slides October 8, 1996

e.
M at

nore



=  McMaster University =

Who Does the T esting?

You are a fool if you don’t test your program!

Your customer/boss is a fool if they don't test yo
program?

Many software companies have testing special
in quality assurance companies.

“Cleanroom” model says that you are not allowe
to test your program.

* Increased care yields big improvements in qualit
« Statistical testing is done by others.

The basic issues:
Human beings all tend to overlook the same cas

How can random testing be better than plann
testing?

Can we have planned random testing?

T

Sts

2d

V.

es.
ed

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

5 testing.slides October 8, 1996

= McMaster University =

Three Kinds of T esting

Black Box Testing
*Based on Specification Alone
*Cases chosen without looking at code

Clear Box Esting
*Test Choice Based on Code

*Use coverage criteria described earlier

Grey Box Testing
Intended for modules with memory
*Look at Data structure
*Assures that state coverage is good
*May use design documentation as a further check

All have their place

*Black Box testing can be re-used with new design
*Black Box testing can be independent of designer
*Clear Box testing tests the mechanism

*Grey Box testing gives better coverage for black box w
memory. Avoids some duplicate tests

th

6 testing.slides

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

October 8, 1996



=  McMaster University =

Another T esting Method Classification

Planned &sting
*Clear Box - based on code coverage criteria
*Black Box - based on external case coverage

Wild Random Esting
*Pick arguments using uniform random distribution
«Can find cases nobody ever thinks of
*Can violate assumptions yielding spurious errors
ereliability figures can be obtained but aren’t meaningful

Statistical Randoméisting.
*Requires an operational profile
*Provides meaningful reliability figures
*Only as good as the operational profile.

= McMaster University =

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

testing.slides October 8, 1996

Hierar chical T esting P olicies

Testing the whole system at once is a disaster.
Finding the fault is a nightmare.

Test Small Units first.
Integrateafter components have passed all test:s

Test lower levels of uses hierarchy before usir
them.

Bottom Line:

A delay before integration will save time after

integration.

)

9

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

testing.slides October 8, 1996



=  McMaster University =

MEASURES OF SOFTWARE QUALITY

We must assume the existence of a specificatio

*We need the ability to tell “right” from “wrong”

Correctness:

Does the software always meet the specificatior

Reliability:

The probability of correct behaviour is?

Trustworthiness:

Is there a low probability that catastrophic flaws

remain after all verification.

Each of these measures is different, each requires a

different verification method.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

testing.slides October 8, 1996

= McMaster University =

WHEN SHOULD WE USE EACH OF THESE
QUALITY MEASURES?

Correctness:

Rarely need it!
Nice to reach for, hard to get.

To a perfectionist, all
important.

Not our real concern, we accept imperfections.

Use formal methods and rigor ous pr oof.

If you have a small finite state space, you can ¢
an exhaustive search.

Binary Decision Diagrams, (BDDs) handle
slightly bigger cases.

10

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

testing.slides October 8, 1996

things are equally

lo




=  McMaster University =

WHEN SHOULD WE USE EACH OF THESE
QUALITY MEASURES?

Reliability:

when we can consider all errors are equal
important,

when there are no unacceptable failures,
when operating conditions are predictable,
when we can talk about the expected cost,
when your concern is inconvenience

when we want to compare risks.

Use Testing, both Statistical and Planned.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

11 testing.slides October 8, 1996

Yy

= McMaster University =

WHEN SHOULD WE USE EACH OF THESE
QUALITY MEASURES?

Trustw orthiness:

when you can identify unacceptable failures,
when trust is vital to meeting the requirements,

when there may be antagonistic “users”.
We often accept the systems that are unreliable.
We do not use systems that we dare not trust.

Testing does not work for trustworthiness.

Use formal documentation and systematic
inspections.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

12 testing.slides October 8, 1996




=  McMaster University =

WHAT ARE THE LIMITS OF SOFTWARE
TESTING?

Testing can show the presence of bugs but
never their absence. (E.W. Dijkstra)

False in theory, but true in practice,

It is impractical to use testing to demonstrat
trustworthiness.

Onecanuse testing to assess reliability.

Two sides of a coin:
| would not trust an untested program!

At Darlington we found serious errors in
programs that had been tested for years!

= McMaster University =

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

13 testing.slides October 8, 1996

WHAT ARE THE LIMITS OF SOFTWARE
TESTING?

1) It is not wusually practical to prove
correctness by testing.

2) Testing cannot predict availability.

3) Reliability predictions based on old
versions are not valid.

4) Testers make the same assumptions as
the programmers.

5) Planned testing is a source of anecdotes,
not data (H.D. Mills).

6) Self-tests test for decay, but not built-in
defects.

Formal Methods complement testing.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

14 testing.slides October 8, 1996



=  McMaster University =

Even in “Blac_k Box” testing, what’” s
inside does make a diff erence!

The number of tests needed to identify a finite
state machine depends on an upperbound for the
number of states.

The length of a test-trajectory will depend on th
memory characteristics of the system.

D

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

15 testing.slides October 8, 1996

= McMaster University =

WHAT DOES IT MEAN TO TALK ABOUT
SOFTWARE RELIABILITY?

Software is not a random process.
It is the input data that introduce randomness.

“Software Reliability” is a measure of the
input distribution through a boolean filter.

Software cannot be assessed as a set of
components.

Software + Hardware must be assessed as
a single component.

Formal Methods contribute directly to
trustworthiness and correctness but less direct
to reliability because of the importance of the
input distribution.

y

1%

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

16 testing.slides October 8, 1996



=  McMaster University =

MEANINGLESS MEASURES USED FOR
SOFTWARE RELIABILITY

1) The number of errors per 1000 llines.
2) Time derivatives of the number of errors per lir

It is the failure rate that matters.

Formal methods do help the first two!

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

17 testing.slides October 8, 1996

= McMaster University =

How much testing is needed to assess reliability?

1) Assume that we have the right input distributi
(difficult). We will use tests selected randomly fro
this distribution.

2) Let 1/h be the required reliability.
3) What is the probability of passing N properly selec
tests if each test would fail with probability 1/h?
M=(1-1/hN
4) M is the probability that a marginal product wou
pass a test sequence of length N.
5) Some examples for h = 1000
N =500, M = 0.606
*N =1000, M = .36700
N = 5000, M = .00672
6) Some examples for h = 1,000,000
N = 1,000, 000, M = .36788
*N = 5000000, N =.00674

Critical Systems, systems with high
requirements, are much harder to test.

reliabili

Expert opinion says you can'’t do it.

Some companies use users to get more tests.

@]
5

m

ted

Id

Ly

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

18 testing.slides October 8, 1996



=  McMaster University = = McMaster University =

Real-time systems are har der to test Conclusions
than batc h (memor y free) systems

1) Safety-Critical systems require both inspection
In real-time systems, a test is a trajectory, and testing.
not an input state.

The trajectory must be long enough that 2) Engineering training is essential.

sleeper bugs are revealed. 3) Engineers see testing and mathematical analysis

There must be an upper limit to the memory as complementary and both are necessary.
of the system.

==

Systems must be structured with testing in mind. Let's worry about first-things first.

Most of the memory must be periodically

reinitialised. If we cannot use these methods for documentation and
) inspection, they won't be good for the more advanced
Testing must be repeated for each mode of the apglications. Y J

remaining memory.

Defining the probability distribution of
trajectories is the hardest part.

Formal methods are more important in
real-time applications

Communications Research Laboratory Communications Research Laboratory
Software Engineering Research Group Software Engineering Research Group
“connecting theory with practice” “connecting theory with practice”

19 testing.slides October 8, 1996 20 testing.slides October 8, 1996



=  McMaster University =

The Critical-Software TRIPOD

1) Precise, Organised, Mathematical Documente
and Extensive Systematic Review.

2) Extensive Testing
« Systematic Testing-quick discovery of gross erra

*Random Testing -discovery of shared oversights
reliability assessment

3) Qualified People and Approved Processes.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

21 testing.slides October 8, 1996

1tion

and

= McMaster University =

What Should Y ou Do?

*Take Testing Seriously.
*Make a Test Plan
*Keep Complete Logs.

*Think about what you really know after a
test has been passed.

22

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

testing.slides October 8, 1996



