
 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
1 tracerole.slides

SOME TERMINOLOGY FOR THIS TALK

1. MODULE
A set of programs intended as a cohesive work
assignment

2. PACKAGE
A set of programs working on a COMPLETELY
private data structure

3. INFORMATION HIDING PRINCIPLE
Modules should be packages!
Things likely to change should be private.
Interface should abstract from “secrets”.

4. OBJECT/VARIABLE
a. Finite state machine.
b. Independent of all other objects.
c. Viewed as a collection of access programs.
d. May be grouped into “types” in arbitrary

ways.
e. Many objects may be implemented by a single

module.
f. We neglect resource interactions.

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
2 tracerole.slides

What are “specifications”?

A. General definition of specification

Specific information about the object

B. Engineering definition

Specific information about the
requirements the object must meet

Must be “black-box” descriptions

Internal design decisions are not requirements

Properties such as “ease of change” are
requirements

C. We will use it in the engineering sense



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
3 tracerole.slides

Why do we need module specifications?

A. Multiperson projects.

B. Multiversion projects.

C. “Our inability to do much” (E. W. Dijkstra).

Each subtask should have a definition
independent of the rest of the job.

D. Making early decisions explicit and precise.

1. Intramodule assumptions.

2. Decision postponement.

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
4 tracerole.slides

Why must specifications be precise?

A. Early, distributed design decisions are hard to
correct.

B. Prevent incompatibility between parts.

C. Remove the need for excessive information
distribution.

- Napkin Story

D. Minimise forbidden assumptions.



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
5 tracerole.slides

Why must specifications be abstract?

A. Abstraction--one model, many realisations.

B. Must allow many versions.

C. State only requirements e.g.: fictitious sort.

D. Less information to comprehend.

E. User only concerned about that which he could
eventually discover for himself by legitimate use.

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
6 tracerole.slides

What do we mean by formal?

A. Not “superficial”

B. Not full of greek letters, subscripts, and
superscripts.

C. Based on restricted forms and strict interpretation
rules.

1. Reduced chance of misinterpretation.

2. Mechanically interpretable.



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
7 tracerole.slides

Why not Natural Language

(French, German, English, Dutch, ...?)

A. Interpretation requires an elaborate legal system.

B. Examples of subtle ambiguities in natural
language specifications.

1. Delivers the top of the stack.

2. Delivers the address of the new PSW.

3. Removes the top element from the stack.

4. The date three months from today.

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
8 tracerole.slides

Module Specifications Vs. Program Specifications

Programs do not hide data.

Program effects can be described in terms of data
structure.

Program effects are visible immediately.

Modules have hidden data.

Module specifications may not mention the data
structure.

Module effects can have delayed visibility.

We use relational specifications for programs.

We use “trace assertions” for modules.

The two are completely compatible.



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
9 tracerole.slides

The basic rules of abstract formal specifications

A. Stating the visible effects of module access
programs on each other.

B. Refusal to mention internal or invisible effects.

The road to abstract specifications.

C. Leaving some externally visible values undefined.

To restrict statements to requirements.

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
10 tracerole.slides

Syntax in a Specification

A. What is a type?

An equivalence class of variables.

There aremany equivalence relations of interest.

A variable may be of more than one type.

B. Syntax section presents type information.

Defines the permitted set of variables/values as
parameters.

Define where the return value may be used.



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
11 tracerole.slides

Stating the “syntactic” properties of
module access programs

A. Does the module access program have a value?
What is its type?

B. Input parameters: How many? What type?

C. Output parameters: How many? What type?

D. This information specifies the syntactically
allowed invocations in a program text.

E. More information can be added by defining more
types.

The line between syntax and semantics can be
moved.

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
12 tracerole.slides

Describing “don't cares”, three approaches:

A. Leave certain values undefined

- may be mistaken for incompleteness

B. Use a special symbol for “undefined”

- makes the specification larger, but checkable

C. Describe the set of possible values (non-
determinism)



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
13 tracerole.slides

Specifying forbidden actions, three approaches

A. State the allowed actions, ignore the others.

B. State the effects of restriction violation
(if checking affordable).

C. Use non-determinism.

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
14 tracerole.slides

COMMUNICATION WITH OBJECTS

1. Input variables: object observes these
“continuously”.

2. Output variables:

the only information available from an object.

information available continuously

3. Input arguments of access programs.

4. Output arguments of access programs.



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
15 tracerole.slides

Content vs. Notation

A. Rules about content important.

B. Syntactic invention still needed.

C. Don't let syntax control content.

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
16 tracerole.slides

The Structure Of Specifications

 Mathematical generality is nice, but

 It does not always help,

 A rigid structure makes documents easier to check,

A rigid structure makes specifications easier to
write.



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
17 tracerole.slides

What is a Trace?

A. Execution history of a module from creation

All events affecting the module

Usually invocations of access programs

B. A subtrace is part of a trace, not necessarily the
initial part

We make assertions about traces, not subtraces

C. Notation for describing traces and subtraces

1. PUSH(a)

2. PUSH(A).Y(4)

3. _

4. [TOP.PUSH(ai)]

5. output values can appear in traces

i 1=

n

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
18 tracerole.slides

Why are Traces Important?

Any property of the module that concerns the user is
visible.

Any visible property can be expressed in terms of
traces and returned values.

If we can define the set of allowed traces, we have
defined the circumstances under which the module
must function.

If we define returned values as a function of the
history (trace), we have specified what the module
must do.



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
19 tracerole.slides

When can two traces be equivalent? (≡)

Equivalent traces must be indistinguishable from
outside the module.

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
20 tracerole.slides

What is a canonical trace?

There is an infinite set of possible traces.

Because the module is a finite state machine, there
are equivalent traces.

The equivalence relation determines a finite set of
equivalence classes.

We pick one representative from each class as
canonical.



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
21 tracerole.slides

Why are canonical traces important?

1. They provide a simplified way of defining the
equivalence relation.

2. We can simplify the description of certain
functions by restricting the domain to canonical
traces.

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
22 tracerole.slides

Extensions of a Canonical Trace by a Single Event

A) The result may be a canonical trace.

B) The result may be equivalent to a canonical trace.



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
23 tracerole.slides

A trace assertion specification consists of:

1) A syntax section naming the access programs
and the types of the parameters and return values.

2) A predicate defining the canonical form for
traces.

3) A set of functions, one corresponding to each
access program, specifying the canonical trace
equivalent to an extension of a canonical trace by
an invocation of that access program.

These functions also define the legality of the
extension. The range is (newtrace,%class%).
%class% provides information for error recovery.

4) A set of relations/functions defining the set of
allowable values to be returned for a given
canonical trace.

5) Functions defining return values in terms of
output values.

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
24 tracerole.slides

When is a specification complete?

If the domain of each extension function includes all
canonical traces, and all possible extensions.

If the domain of the relations defining values includes
all canonical traces.



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
25 tracerole.slides

When is a specification consistent?

When all equivalent traces have the same set of
allowed values,

When the extension functions are functions.

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
26 tracerole.slides

How Do We Handle Non-Determinism

1. For non-deterministic cases the values should
be included in the trace.

2. We still use extension functions, a unique
canonical trace. *

3. Value functions can be relations.

* this is a debateable decision.



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
27 tracerole.slides

Choice vs. Non-determinism

1. Non-determinism is one form of “don't care”.

2. Although we may not care about the answer, we
may want consistency.

3. Then we must provide a set of deterministic
specifications.

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
28 tracerole.slides

The Use Of Tables As Expressions

1. The rows partition the domain.

2. The expressions defining the values are
simplified.

3. Systematic checks for completeness and
consistency are easier.

4. Checks for correctness are easier.



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
29 tracerole.slides

Existential Quantification Of Free Variables

1. Full quantification clutters up expressions.

2. Automatic existential quantification of free
variables gives a “pattern match” semantics.

3. We use default duplication of left hand side
definitions.

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
30 tracerole.slides

Naming Objects

1. Multiple-object modules require the ability
to name objects.

2. Both names and values may appear in traces.



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
31 tracerole.slides

Traces Used As Values

1. We need a notation for “literal” values of
abstract types.

2. The canonical trace serves that role.

3. Shorthand can be defined in terms of canonical
traces.

4. These values can be used in our relational
program semantics.

5. Objects, are data elements for higher level
programs.

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
32 tracerole.slides

What is the effect of programming

languages on specifications

A. Lack of choices in some languages leads to
simplification.

B. Lack of “functions” leads to minor complication.

C. User-defined types can simplify specifications.

D. Scope rules can compromise implementations.



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
33 tracerole.slides

FIGURE 1: UNBOUNDED INTEGER STACK MODULE

TYPE IMPLEMENTED: <stack>

(1) SYNTAX

OUTPUT VARIABLES

ACCESS PROGRAMS

(2) CANONICAL TRACES

canonical(T)↔ ( T = )

(3) EQUIVALENCES

T.PUSH(a)≡ T.PUSH(a)

T.POP≡

T.TOP≡

Variable Name Type

top <integer>

Program Name Value Arg#1

PUSH <integer>

POP

TOP <integer>

conditions equivalences

T = _ %empty%

T ≠ _
T1  where
T = T1.PUSH(a)

conditions equivalences

T = _ %empty%

T ≠ _ T

PUSH ai( )[ ]i 1=
n

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
34 tracerole.slides

(4) OUTPUT VALUES

V[top](T) =

(5) RETURN VALUES

conditions equivalences

T = _ %undefined%

T ≠ _
a  where
T = T1.PUSH(a)

Program Name Argument No Value

TOP Value top



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
35 tracerole.slides

FIGURE 2: MULTIPLE UNBOUNDED INTEGER STACK MODULE

TYPE IMPLEMENTED: <stack>

(1) SYNTAX

OUTPUT VARIABLES

ACCESS PROGRAMS

(2) CANONICAL TRACES

canonical(Ts) ↔ (Ts = _ )∨ (Ts = CREATESTACK(‘S’).[PUSH(<‘S’,$>,ai)

(3) EQUIVALENCES

Ts.CREATESTACK(‘S’)≡ CREATESTACK(‘S’)

Ts.PUSH(<‘S’,$>,a)≡

Ts.POP(<‘S’,$>,a)≡

Variable Name Type

top <integer>

Program Name Value Arg#1 Arg#2

CREATESTACK <name>:0

PUSH <name,stack>:0 <integer>

POP <name,stack>:0

TOP <integer> <stack>

conditions equivalences

T = _ %invalidstack%

T ≠ _ Ts.PUSH(<‘S’,$>,a)

conditions equivalences

Ts= _ %invalidstack%

length(Ts) = 1 %empty%

length(Ts) > 1
T1s  where
Ts = T1s.PUSH(<‘S’,$>,a)

]i 1=
n

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
36 tracerole.slides

(4) VALUES

OUTPUT VALUES

V[top](Ts) =

RETURN VALUES

conditions equivalences

length(Ts) ≤ 1 %undefined%

length(Ts) > 1
a  where
Ts = T1s.PUSH(<‘S’,$>,a)

Program Name Argument No Value

TOP Value top



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
37 tracerole.slides

FIGURE 3: INTEGER QUEUE WITH CAPACITY = 12

TYPE IMPLEMENTED: <queue>

(1) SYNTAX

OUTPUT VARIABLES

ACCESS PROGRAMS

(2) CANONICAL TRACES

canonical(T)↔ ( T = ) ∧

(3) EQUIVALENCES

T.ADD(a) ≡

T.REMOVE≡

T.FRONT≡

Variable Name Type

front <integer>

Program Name Value Arg#1

ADD <integer>

REMOVE

FRONT <integer>

conditions equivalences

length(T) = 12 %full%

length(T) < 12 T.ADD(a)

conditions equivalences

T = _ %empty%

T ≠ _
S1 where

T = ADD(a) . S1

conditions equivalences

T = _ %empty%

T ≠ _ T

ADD ai( )[ ]i 1=
n

0 n 12≤ ≤( )

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
38 tracerole.slides

(4) VALUES

OUTPUT VALUES

V[front](T) =

RETURN VALUES

conditions equivalences

T = _ undefined

T ≠ _
S1 where
T = ADD(a) . S1

Program Name Argument No Value

FRONT Value front



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
39 tracerole.slides

FIGURE 4: OVERFLOW INTEGER STACK MODULE
TYPE IMPLEMENTED: <stac>

(1) SYNTAX

OUTPUT VARIABLES

ACCESS PROGRAMS

(2) CANONICAL TRACES

canonical(T)↔ ( T = ) ∧ (n ≤ #stacksize#)

DICTIONARY

#stacksize#: specification parameter

(3) EQUIVALENCES

T.PUSH(a)≡

T.POP≡

T.TOP≡

Variable Name Type

top <integer>

Program Name Value Arg#1

PUSH <integer>

POP

TOP <integer>

conditions equivalences

length(T) < #stacksize# T.PUSH(a)

length(T) = #stacksize#
S1.PUSH(a)  where
T = PUSH(b).S1

conditions equivalences

T = _ %empty%

T ≠ _ T | where T = T1 PUSH(a)

conditions equivalences

T = _ %empty%

T ≠ _ T

PUSH( ) ai( )[ ]i 1=
n

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
40 tracerole.slides

(4) VALUES

OUTPUT VALUES

V[top](T) =

RETURN VALUES

conditions equivalences

T = _ %undefined%

T ≠ _
a mod 255  where
T = T1.PUSH(a)

Program Name Argument No Value

TOP Value top



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
41 tracerole.slides

FIGURE 4 A: OVERFLOW INTEGER STACK MODULE (Version 2)

TYPE IMPLEMENTED: <stac>

(1) SYNTAX

OUTPUT VARIABLES

ACCESS PROGRAMS

(2) CANONICAL TRACES

canonical(T)↔
( T = ) ∧ (n ≤ #stacksize#)∧
( ∀ ai , 0 ≤ ai ∧ ai ≤ 254)

DICTIONARY

#stacksize#: specification parameter

(3) EQUIVALENCES

T.PUSH(a)≡

Variable Name Type

top <integer>

Program Name Value Arg#1

PUSH <integer>

POP

TOP <integer>

conditions equivalences

length(T) < #stacksize# T.PUSH(a mod 255)

length(T) = #stacksize#
S1.PUSH(a mod 255)  where
T = PUSH(b).S1

PUSH( ) ai( )[ ]i 1=
n

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
42 tracerole.slides

T.POP≡

T.TOP≡

(4) VALUES

OUTPUT VALUES

V[top](T) =

RETURN VALUES

conditions equivalences

T = _ %empty%

T ≠ _
T1  where
T = T1.PUSH(a)

conditions equivalences

T = _ %empty%

T ≠ _ T

conditions equivalences

T = _ %undefined%

T ≠ _
a  where
T = T1.PUSH(a)

Program Name Argument No Value

TOP Value top



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
43 tracerole.slides

FIGURE 5: UNBOUNDED INTEGER TABLE LIST MODULE

TYPE IMPLEMENTED: <T/L>

(1) SYNTAX

OUTPUT VARIABLES

ACCESS PROGRAMS

(2) CANONICAL TRACES

canonical(T)↔ ( T = . ) ∧ (m ≥ n)

DICTIONARY

AUXILIARY FUNCTIONS

Variable Name Type

left <boolean>

right <boolean>

out <boolean>

current <integer>

Program Name Value Arg#1

INSERT <integer>

ALTER <integer>

DELETE

EXLEFT <boolean>

EXRIGHT <boolean>

OUT <boolean>

GOLEFT

GORIGHT

CURRENT <integer>

Function Name Value Arg#1 Arg#2 Arg#3 Arg#4 Arg#5

parse <boolean> <trace> <trace> <trace> <trace> <trace>

INSERT ai( )[ ]i 1=
m

GOLEFT[ ]i 1=
n

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
44 tracerole.slides

parse(S,S1,C,S2,G) =

(3) EQUIVALENCES

T.INSERT(a)≡

T.ALTER(b) ≡

T.DELETE≡

conditions equivalences

(S = S1.C.S2.G)∧

(S1 = )∧ (C = INSERT(a))∧

(S2 = ) ∧ (G = )

true

else false

conditions equivalences

count(T,INSERT) = count(T,GOLEFT) INSERT(a).T

count(T,INSERT) > count(T,GOLEFT)
T1.C.INSERT(a).S1.G  where
parse(T,T1,C,S1,G)

conditions equivalences

count(T,INSERT) = count(T,GOLEFT) %noncurrent%

count(T,INSERT) > count(T,GOLEFT)
T1.INSERT(b).S1.G  where
parse(T,T1,INSERT(a),S1,G)

conditions equivalences

count(T,INSERT) = count(T,GOLEFT) %noncurrent%

count(T,INSERT) > count(T,GOLEFT)
T1.S1.G  where
parse(T,T1,C,S1,G)

INSERT ai( )[ ]i 1=
m

INSERT bi( )[ ]i 1=
n

GOLEFT[ ]i 1=
n



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
45 tracerole.slides

T.EXLEFT ≡ T

T.EXRIGHT ≡ Τ

T.OUT ≡ Τ

T.GOLEFT≡

T.GORIGHT≡

T.CURRENT ≡

(4) VALUES

OUTPUT VALUES

V[list](T) =

conditions equivalences

count(T,INSERT) = count(T,GOLEFT) %noleft%

count(T,INSERT) > count(T,GOLEFT) T.GOLEFT

conditions equivalences

count(T,GOLEFT) = 0 %noright%

count(T,GOLEFT) > 0 T1 where T = T1.GOLEFT

conditions equivalences

count(T,INSERT) = count(T,GOLEFT) %noncurrent%

count(T,INSERT) > count(T,GOLEFT) T

conditions value

count(T,INSERT) - count(T,GOLEFT) > 1 true

count(T,INSERT) - count(T,GOLEFT)≤ 1 false

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
46 tracerole.slides

V[right](T) =

V[out](T) =

V[current](T) =

RETURN VALUES

conditions value

count(T,GOLEFT) > 0 true

count(T,GOLEFT)= 0 false

conditions value

count(T,INSERT) = count(T,GOLEFT) true

count(T,INSERT) > count(T,GOLEFT) false

conditions value

count(T,INSERT) = count(T,GOLEFT) %undefined%

count(T,INSERT) > count(T,GOLEFT)
a where
parse(T,T1,INSERT(a),S1,G)

Program Name Argument No Value

EXLEFT Value left

EXRIGHT Value right

OUT Value out

CURRENT Value current



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
47 tracerole.slides

FIGURE 6: UNBOUNDED UNIQUE INTEGER PRODUCER MODULE

TYPE IMPLEMENTED: <int>

(1) SYNTAX

OUTPUT VARIABLES

ACCESS PROGRAMS

(2) CANONICAL TRACES

canonical(T)↔
(T = [ . ) ∧
(∀ T1,S1,S2,xi,xj)((T = T1.(xi).S1.(xj).S2) → (xi < xj))

(3) EQUIVALENCES

T.VA[T].GETINT ≡ T1.VA[T].GETINT.S1
where

(T = T1.S1)∧ canonical(T1.VA[T].GETINT.S1)

(4) VALUES

OUTPUT VALUES

V[int](T) ∈ { a | ¬ ∃ T1,S1)(T = T1.(a).S1) }

RETURN VALUES

Variable Name Type

top <integer>

Program Name Value

GETINT <integer>

Program Name Argument No Value

GETINT Value top

xi 1–( ) GETINT]i 1=
n

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
48 tracerole.slides

FIGURE 7: UNBOUNDED PRIORITY INTEGER QUEUE MODULE

TYPE IMPLEMENTED: <pqueue>

(1) SYNTAX

OUTPUT VARIABLES

ACCESS PROGRAMS

(2) CANONICAL TRACES

canonical(T)↔
(T = [ . ) ∧ ( ) = (%empty%))∧
(∀ T1,S1,p,p1,x,x1)((T = T1.INSERT(p,x).(x).INSERT(p1,x1).S1 →

(p < p1) ∨ ((p = p1) ∧ (x ≤ x1))

(3) EQUIVALENCES

T.VA[T].INSERT(a,b)≡

Variable Name Type

front <integer>

Program Name Value Arg#1 Arg#2

INSERT <integer> <integer>

REMOVE

FRONT <integer>

conditions equivalences

T = _ T.VA[T].INSERT(a,b)

(T = T1.INSERT(p,x))∧
((p > a) ∨ (p = a) ∧ (x > b))

S1.INSERT(a,b).(b).S2  where
(T = S1.S2)∧
canonical(S1.INSERT(a,b).(b).S2)

(T = T1.INSERT(p,x))∧
((p < a) ∨ (p = a) ∧ (x ≤ b))

T1.INSERT(p,x).(x).INSERT(a,b)

xi 1–( ) INSERT pi xi,( ) ]i 1=
n

x0i( )



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
49 tracerole.slides

T.VA[T].REMOVE ≡

T.VA[T].FRONT ≡ T

(4) VALUES

OUTPUT VALUES

V[front](T,O)

RETURN VALUES

conditions equivalences

T = _ %empty%

T = T1.(y).INSERT(p,VA[T]) T1

T = T1.INSERT(p,VA[T]).VA[T].S1)∧
(∀ S2,S3,u,v)((S1= S2.INSERT(u,v).S3 →

(u = p∧ (v > VA[T]))
T1.S1

conditions values

T = _ %empty%

T ≠ _
O = a  where
(T = T1.INSERT(p,a).S1)∧
(∀ S2,S3,u,v)((T = S2.INSERT(u,v).S3→ (u ≤ p))

Program Name Argument No Value

FRONT Value front

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
50 tracerole.slides

FIGURE 8: MULTIPLE BINARY INTEGER TREE MODULE

TYPE IMPLEMENTED: <tree>

(1) SYNTAX

OUTPUT VARIABLES

ACCESS PROGRAMS

(2) CANONICAL TRACES

canonical(TR) ↔
(TR = _ ) ∨
(TR = SETNIL(‘R’) ) ∨
(TR = SETTREE(‘R’,i,U,V))

DICTIONARY

EXTERNAL TYPES

<path> PATH HOLDER MODULE

Variable Name Type

tree <tree>

Program Name Value Arg#1 Arg#2 Arg#3 Arg#4

SETNIL <name>:0

SETTREE <name>:0 <integer> <tree> <tree>

ALTERNODE <name,tree>:0 <path> <integer>

ALTERTREE <name,tree>:0 <path> <tree>

GETNODE <integer> <tree> <path>



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
51 tracerole.slides

AUXILIARY FUNCTIONS

validpath(R,P) =

update(R,P,X) =

Program Name Value Arg#1 Arg#2 Arg#3

validpath <boolean> <tree> <path>

update <tree> <tree> <path> <tree>

change <tree> <tree> <path> <integer>

getval <integer> <tree> <path>

conditions values

(TR = SETTREE(‘R’,i,U,V))  ∧
(EMPTYPATH(P)∨
GOLEFT(P)∧ validpath(U,SUBPATH(P))∨
GORIGHT(P)∧ validpath(V,SUBPATH(P)))

true

else false

conditions values

validpath(R,P) ∧
EMPTYPATH(P)∧
(TX = SETNIL(‘X’))

SETNIL(‘R’)

validpath(R,P) ∧
EMPTYPATH(P)∧
(TX = SETTREE(‘X’,i,U,V))

SETTREE(‘X’,i,U,V)

validpath(R,P) ∧ GOLEFT(P) ∧
(TR = SETTREE(‘R’,i,U,V))

SETTREE(‘R’,i,update(U,SUBPATH(P),X),V)

validpath(R,P) ∧ GORIGHT(P) ∧
(TR = SETTREE(‘R’,i,U,V))

SETTREE(‘R’,i,U,update(V,SUBPATH(P),X))

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
52 tracerole.slides

change(R,P,j) =

update(R,P) =

(3) EQUIVALENCES

(TR.SETNIL(‘R’)  ≡ SETNIL(‘R’)

TR.SETTREE(‘R’,i,U,V)≡ SETTREE(‘R’,i,U,V)

TU.SETTREE(‘R’,i,U,V)≡

TV.SETTREE(‘R’,i,U,V)≡

conditions values

validpath(R,P) ∧
EMPTYPATH(P)

SETTREE(‘R’,j,U,V) where

else false

conditions values

validpath(R,P) ∧
EMPTYPATH(P)

i  where
TR = SETTREE(‘R’,i,U,V)

validpath(R,P) ∧
GOLEFT(P)

getval(U,SUBPAHT(P))  where
TR = SETTREE(‘R’,i,U,V)

validpath(R,P) ∧
GORIGHT(P)

getval(V,SUBPAHT(P))  where
TR = SETTREE(‘R’,i,U,V)

conditions values

‘R’ = ‘U’ SETTREE(‘U’,j,U,V)

’R’  ≠ ‘U’ T U

conditions values

‘R’ = ‘V’ SETTREE(‘V’,j,U,V)

’R’  ≠ ‘V’ T V



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
53 tracerole.slides

TR.ALTERTREE(<‘R’,$>,P,X)≡

TX.ALTERTREE(<‘R’,$>,P,X)≡

TR.ALTERNODE(<‘R’,$>,P,i)≡

TR.GETTREE(<‘R’,$>,P,X)≡

conditions values

¬validpath(R,P) %invalidpath%

validpath(R,P) update(R,P,X)

conditions equivalences

¬validpath(R,P) %invalidpath%

validpath(R,P)∧ (‘X’ = ‘R’) update(X,P,X)

validpath(R,P)∧ (‘X’ ≠ ‘R’) T X

conditions equivalences

¬validpath(R,P) %invalidpath%

validpath(R,P) change(R,P,i)

conditions equivalences

¬validpath(R,P) %invalidpath%

validpath(R,P)∧ (TR = SETNIL(‘R’) ) %empty%

validpath(R,P)∧ (TR ≠ SETNIL(‘R’) ) TR

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
54 tracerole.slides

(4) VALUES

OUTPUT VALUES

V[tree](TR) = TR

RETURN VALUES

Program Name Argument No Value

GETNODE Value
¬validpath(Arg#1,Arg#2) %invalidpath%

validpath(Arg#1,Arg#2) getval(Arg#1,Arg#2)



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
55 tracerole.slides

FIGURE 9: PATH HOLDER MODULE

TYPE IMPLEMENTED: <path>

(1) SYNTAX

OUTPUT VARIABLES

ACCESS PROGRAMS

(2) CANONICAL TRACES

canonical(TR) ↔ (TP = _ ) ∨ (TP = MAKEPATH(’P’).[ADDPATH(<‘P’,$>,ci)]i
n
= 1)

(3) EQUIVALENCES

TP.MAKEPATH(’P’)  ≡ MAKEPATH(’P’)

TP.EMPTYPATH($) ≡

Variable Name Type

empty <boolean>

left <boolean>

right <boolean>

Program Name Value Arg#1 Arg#2

MAKEPATH <name>:0

ADDPATH <name,path>:0 <char>

SUBPATH <name,path>:0

EMPTYPATH <boolean> <path>

GOLEFT <boolean> <path>

GORIGHT <boolean> <path>

conditions values

TP = _ %invalidpath%

TP ≠ _ TP

 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
56 tracerole.slides

TP.GOLEFT($) ≡

TP.GORIGHT($) ≡

TP.ADDPATH(<‘P’,$>,c) ≡

TP.SUBPATH(<‘P’,$>) ≡

conditions equivalences

TP = _ %invalidpath%

TP ≠ _ TP

conditions equivalences

TP = _ %invalidpath%

TP ≠ _ TP

conditions equivalences

TP = _ %invalidpath%

(TP ≠ _) ∧ (c  ≠ ‘1’) ∧ (c ≠ ‘r’) %wrongdirection

(TP ≠ _) ∧ ((c ≠ ‘1’) ∨ (c ≠ ‘r’)) T P.ADDPATH(<‘P’,$>,c)

conditions equivalences

TP = _ %invalidpath%

TP = MAKEPATH(’P’) %emptypath%

TP = MAKEPATH(’P’).ADDPATH(<‘P’,$>,c).T1P TP.ADDPATH(<‘P’,$>,c)



 McMaster University

10/1/96

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
57 tracerole.slides

(4) VALUES

OUTPUT VALUES

V[empty](TP) =

V[left](T P) =

V[right](TP) =

RETURN VALUESS

conditions equivalences

TP = _ %undefined%

TP = MAKEPATH(’P’) true

TP = MAKEPATH(’P’).ADDPATH(<‘P’,$>,c).T1P false

conditions equivalences

TP = _ %undefined%

TP = MAKEPATH(’P’).ADDPATH(<‘P’,$>,’1’).T1P true

else false

conditions equivalences

TP = _ %undefined%

TP = MAKEPATH(’P’).ADDPATH(<‘P’,$>,’r’).T1 P true

else false

Program Name Argument No Value

EMPTYPATH Value empty

GOLEFT Value left

GORIGHT Value right


