= McMaster University =

1.

SOME TERMINOLOGY FOR THIS TALK
MODULE

A set of programs intended as a cohesive work

assignment

PACKAGE

A set of programs working on a COMPLETELY

private data structure

INFORMATION HIDING PRINCIPLE
Modules should be packages!

Things likely to change should be private.
Interface should abstract from “secrets”.

OBJECT/VARIABLE
a. Finite state machine.

b. Independent of all other objects.

c. Viewed as a collection of access programs.

d. May be grouped into “types” in arbitra
ways.

e. Many objects may be implemented by a sir
module.

f. We neglect resource interactions.

1

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

tracerole.slides 1 10/1/96

= McMaster University =

. Engineering definition

. We will use it in the engineering sense

What are “specifications™?

General definition of specification

Specific information about the object

Specific information about the
requirements the object must meet

Must be “black-box” descriptions
Internal design decisions are not requirement

Properties such as
requirements

“ease of change”

(7))

are

2

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

tracerole.slides 1 10/1/96

= McMaster University =

Why do we need module specifications?

. Multiperson projects.

Multiversion projects.

“Our inability to do much” (E. W. Dijkstra).
Each subtask should have
independent of the rest of the job.
. Making early decisions explicit and precise.

1. Intramodule assumptions.

2. Decision postponement.

a definit

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
tracerole.slides 1 10/1/96

ion

= McMaster University =

Why must specifications be precise?

. Early, distributed design decisions are hard

correct.

Prevent incompatibility between parts.

Remove the need for excessive informati

' distribution.

- Napkin Story

. Minimise forbidden assumptions.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
tracerole.slides 1 10/1/96

to

on

= McMaster University =

Why must specifications be abstract?

. Abstraction--one model, many realisations.

Must allow many versions.

State only requirements e.qg.: fictitious sort.

. Less information to comprehend.

User only concerned about that which he could

| eventually discover for himself by legitimate u

Se.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
tracerole.slides 1 10/1/96

= McMaster University =

. Not “superficial”

' superscripts.

rules.

What do we mean by formal?

Not full of greek letters, subscripts, a

Based on restricted forms and strict interpreta

1. Reduced chance of misinterpretation.

2. Mechanically interpretable.

nd

tion

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
tracerole.slides 1 10/1/96

= McMaster University =

Why not Natural Language
(French, German, English, Dutch, ...?)

A. Interpretation requires an elaborate legal syst

B. Examples of subtle ambiguities in natu
language specifications.

1. Delivers the top of the stack.

2. Delivers the address of the new PSW.

3. Removes the top element from the stack.
4.

The date three months from today.

ral

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

tracerole.slides 1 10/1/96

= McMaster University =

em.

Module Specifications Vs. Program Specification

Programs do not hide data.

S

Program effects can be described in terms of data

structure.
Program effects are visible immediately.
Modules have hidden data.

Module specifications may not mention the d
structure.

Module effects can have delayed visibility.
We use relational specifications for programs.
We use “trace assertions” for modules.

The two are completely compatible.

ata

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

tracerole.slides 1 10/1/96

= McMaster University =

The basic rules of abstract formal specifications

A.

Stating the visible effects of module acc
programs on each other.

Refusal to mention internal or invisible effects.

The road to abstract specifications.

Leaving some externally visible values undefined.

To restrict statements to requirements.

tracerole.slides 1

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
10/1/96

€SS

= McMaster University =

. What is a type?

Syntax in a Specification

An equivalence class of variables.
There aranary equivalence relations of intere

A variable may be of more than one type.

Syntax section presents type information.

Defines the permitted set of variables/value:
parameters.

Define where the return value may be used.

U

10

tracerole.slides 1

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
10/1/96

as

= McMaster University =

. This

Stating the “syntactic” properties of
module access programs

Does the module access program have a veé
What is its type?

Input parameters: How many? What type?

Output parameters: How many? What type?

information specifies the syntactice
allowed invocations in a program text.

alue?

ally

More information can be added by defining more

types.

The line between syntax and semantics ca
moved.

11

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

tracerole.slides 1 10/1/96

n be

= McMaster University =

Describing “don't cares”, three approaches:

A. Leave certain values undefined

- may be mistaken for incompleteness

Use a special symbol for “undefined”

- makes the specification larger, but checkab

Describe the set of possible values (n

| determinism)

e

on-

tracerole.slides 1

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
10/1/96

= McMaster University =

= McMaster University =

Specifying forbidden actions, three approaches

A. State the allowed actions, ignore the others.

B. State the effects of restriction violation
(if checking affordable).

C. Use non-determinism.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
13 tracerole.slides 1 10/1/96

COMMUNICATION WITH OBJECTS

Input variables: object observes these
“continuously”.

Output variables:

the only information available from an objec

information available continuously

Input arguments of access programs.

Output arguments of access programs.

14

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
tracerole.slides 1

10/1/96

= McMaster University = = McMaster University =

Content vs. Notation The Structure Of Specifications
A. Rules about content important. Mathematical generality is nice, but
It does not always help,
B. Syntactic invention still needed.
A rigid structure makes documents easier to check,
C. Don't let syntax control content. A rigid structure makes specifications easier to
write.
Communications Research Laboratory Communications Research Laboratory
Software Engineering Research Group Software Engineering Research Group
“connecting theory with practice” “connecting theory with practice”

15 tracerole.slides 1 10/1/96] 16 tracerole.slides 1 10/1/96

= McMaster University =

A. Execution history of a module from creation

What is a Trace?

All events affecting the module
Usually invocations of access programs

A subtrace is part of a trace, not necessarily the
initial part

We make assertions about traces, not subtraces
Notation for describing traces and subtraces

PUSH(a)

1

2. PUSH(A).Y(4)
3.

4. [TOP.PUSH@I 4
5

output values can appear in traces

17

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

tracerole.slides 1 10/1/96

= McMaster University =

Why are Traces Important?

Any property of the module that concerns the use
visible.

traces and returned values.

If we can define the set of allowed traces, we h
defined the circumstances under which the moc
must function.

If we define returned values as a function of 1

must do.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

18 tracerole.slides 1 10/1/96

r IS

Any visible property can be expressed in terms of

ave
Jule

the

history (trace), we have specified what the module

= McMaster University =

When can two traces be equivalent™)

Equivalent traces must be indistinguishable fr
outside the module.

om

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

19 tracerole.slides 1 10/1/96

= McMaster University =

What is a canonical trace?

There is an infinite set of possible traces.

Because the module is a finite state machine, th
are equivalent traces.

The equivalence relation determines a finite se
equivalence classes.

We pick one representative from each class
canonical.

ere

t of

as

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

20 tracerole.slides 1 10/1/96

= McMaster University = = McMaster University =

Why are canonical traces important? Extensions of a Canonical Trace by a Single Event

1. They provide a simplified way of defining the A) The result may be a canonical trace.
equivalence relation.

B) The result may be equivalent to a canonical trace.

2. We can simplify the description of certain
functions by restricting the domain to canonical

traces.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
| 10/1/96] 22 tracerole.slides 1

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
10/1/96

21 tracerole.slides

= McMaster University =

1)

2)

3)

4)

5)

A trace assertion specification consists of:

A syntax section naming the access programs

and the types of the parameters and return values.

A predicate defining the canonical form for
traces.

A set of functions, one corresponding to each
access program, specifying the canonical trace
equivalent to an extension of a canonical trace by
an invocation of that access program.

These functions also define the legality of the
extension. The range is (newtrace,%clas
%class% provides information for error recovery.

A set of relations/functions defining the set of
allowable values to be returned for a given
canonical trace.

Functions defining return values in terms| of
output values.

23

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

tracerole.slides 1 10/1/96

= McMaster University =

When is a specification complete?

If the domain of each extension function includes
canonical traces, and all possible extensions.

If the domain of the relations defining values inclu
all canonical traces.

5 all

des

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

24 tracerole.slides 1 10/1/96

= McMaster University =

When is a specification consistent?

allowed values,

When the extension functions are functions.

When all equivalent traces have the same se

t of

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
25 tracerole.slides 1

10/1/96

= McMaster University =

How Do We Handle Non-Determinism

be included in the trace.

canonical trace. *

3. Value functions can be relations.

* this is a debateable decision.

1. For non-deterministic cases the values sho

2. We still use extension functions, a uniqt

uld

e

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
26 tracerole.slides 1

10/1/96

= McMaster University = = McMaster University =

Choice vs. Non-determinism The Use Of Tables As Expressions

1. The rows partition the domain.
1. Non-determinism is one form of “don't care”.

2. The expressions defining the values Jare

2. Although we may not care about the answer, we simplified.
may want consistency.

3. Systematic checks for completeness and
3. Then we must provide a set of deterministic consistency are easier.
specifications.

4. Checks for correctness are easier.

Communications Research Laboratory Communications Research Laboratory
Software Engineering Research Group Software Engineering Research Group
“connecting theory with practice” “connecting theory with practice”
27 tracerole.slides 1 10/1/96] 28 tracerole.slides 1 10/1/96

= McMaster University = = McMaster University =

Existential Quantification Of Free Variables Naming Objects

1. Full quantification clutters up expressions. 1. Multiple-object modules require the ability
to name objects.

2. Automatic existential quantification of free

variables gives a “pattern match” semantics. 2. Both names and values may appear in traces.

1%

3. We use default duplication of left hand side
definitions.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
10/1/96] 30 tracerole.slides 1

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
29 tracerole.slides 1

10/1/96

= McMaster University =

Traces Used As Values
1. We need a notation for “literal” values of
abstract types.
2. The canonical trace serves that role.
3. Shorthand can be defined in terms of canonical
traces.
4. These values can be used in our relational
program semantics.
5. Objects, are data elements for higher level
programs.
Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
31 tracerole.slides 1 10/1/96

= McMaster University =

. Scope rules can compromise implementations.

What is the effect of programming
languages on specifications

. Lack of choices in some languages leads to

simplification.

Lack of “functions” leads to minor complication.

U)

User-defined types can simplify specifications.

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
tracerole.slides 1 10/1/96

= McMaster University =

FIGURE 1: UNBOUNDED INTEGER STACK MODULE

TYPE IMPLEMENTED: <stack>

(1) SYNTAX
OUTPUT VARIABLES

Variable Name Type

top <integer>

ACCESS PROGRAMS

Program Name Value Arg#l
PUSH <integer>
POP

TOP <integer>

(2) CANONICAL TRACES
canonical(T)e (T = [PUSH(e})]i”:1)

(3) EQUIVALENCES
T.PUSH(a)= T.PUSH(a)

T.POP=
conditions equivalences
T=_ Y%empty%
T1 where
T#_ T = TL.PUSH(a)
T.TOP=
conditions equivalences
T=_ %empty%
T#_ T

33

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
tracerole.slides

10/1/96

= McMaster University =

(4) OUTPUT VALUES

V[top](T) =
conditions equivalences
T=_ %undefined%
a where
T#_ T = TLPUSH(a)

(5) RETURN VALUES

Program Name] ~ Argument NG Value

TOP Value top

34

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
tracerole.slides

10/1/96

= McMaster University =

FIGURE 2: MULTIPLE UNBOUNDED INTEGER STACK MODULE

TYPE IMPLEMENTED: <stack>

(1) SYNTAX
OUTPUT VARIABLES
Variable Name Type
top <integer>
ACCESS PROGRAMS
Program Name Value Arg#l Arg#2
CREATESTACK <name>:0

PUSH <name,stack>:0 <integer>

POP <name,stack>:0

TOP <integer> <stack>

(2) CANONICAL TRACES
canonical(p) « (Ts=_)0(Ts= CREATESTACK('S).[PUSH(<'S" $> 8] ,

(3) EQUIVALENCES

T<CREATESTACK('S")= CREATESTACK('S’)

T<PUSH(<'S' $>,a)E

T4POP(<'S'$>,aF

conditions equivalences
T=_ %invalidstack%
T#_ TsPUSH(<'S",$>,a
conditions equivalences
Ts=_ Y%invalidstack%
length(Ty) = 1 %empty%
Tl where

length(Ty) > 1

Ts=T1.PUSH(<'S’,$>,a)

35

tracerole.slides

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

10/1/96

= McMaster University =

(4) VALUES
OUTPUT VALUES

V[top](T9) =

conditions

equivalences

length(T9 < 1

%undefined%

length(Tg) > 1

a where
Ty = TI,PUSH(<'S',$>,a)

RETURN VALUES

Program Name

Argument Ng Value

TOP

Value top

36

tracerole.slides

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

10/1/96

= McMaster University =

FIGURE 3: INTEGER QUEUE WITH CAPACITY =12

TYPE IMPLEMENTED: <queue>

(1) SYNTAX
OUTPUT VARIABLES

Variable Name Type

front <integer>

ACCESS PROGRAMS

Program Name Value Arg#l

ADD <integer>

REMOVE
FRONT

<integer>

(2) CANONICAL TRACES
canonical(T)~ (T = [ADD(a)]_,)0 (0sn<12)

(3) EQUIVALENCES

T.ADD(a) =
conditions equivalences
length(T) = 12 %full%
length(T) < 12 T.ADD(a)
T.REMOVE=
conditions equivalences
T=_ Y%empty%
T# S1 where
- T=ADD(a) . S1
T.FRONT=
conditions equivalences
T=_ %empty%
TZ%_ T

37

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
tracerole.slides

10/1/96

= McMaster University =

(4) VALUES
OUTPUT VALUES

V[front)(T) =

RETURN VALUES

conditions equivalences
T=_ undefined
T2 S1 where
- T=ADD(a) . S1

Program Name

Argument Ng Value

FRONT

Value front

38

tracerole.slides

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

10/1/96

= McMaster University =

FIGURE 4: OVERFLOW INTEGER STACK MODULE

TYPE IMPLEMENTED: <stac>

(1) SYNTAX
OUTPUT VARIABLES

Variable Name Type

top <integer>

ACCESS PROGRAMS

Program Name Value Arg#l

PUSH <integer>

POP

TOP <integer>

(2) CANONICAL TRACES

canonical(T)e (T= [(PUSH)(ai)]i": ;1) B (n< #stacksize#)
DICTIONARY
#stacksize#: specification parameter

(3) EQUIVALENCES

T.PUSH(aE
conditions equivalences
length(T) < #stacksizeit T.PUSH(a)
length(T) = #stacksize; #iiiléssl:'(?g).sxvhere
T.POP=
conditions equivalences
T=_ %empty%
T#_ T | where T =T1 PUSH(4§)
T.TOP=
conditions equivalences
T=_ %empty%
T#_ T

39

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
tracerole.slides

10/1/96

= McMaster University =

(4) VALUES
OUTPUT VALUES

V[top](T) =

RETURN VALUES

conditions equivalences
T=_ %undefined%
T# amod 255 wherg
- T =T1.PUSH(a)

Program Name

Argument Ng Value

TOP

Value top

40

tracerole.slides

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

10/1/96

= McMaster University =

FIGURE 4 A: OVERFLOW INTEGER STACK MODULE (Version 2)

TYPE IMPLEMENTED: <stac>

(1) SYNTAX
OUTPUT VARIABLES

Variable Name Type

top <integer>

ACCESS PROGRAMS

Program Name Value Arg#l
PUSH <integer>
POP

TOP <integer>

(2) CANONICAL TRACES

canonical(T) -
(T= [(PUSH(a)]]_,) D(n< #stacksize#]]
(Oa,0<g Og<254)

DICTIONARY

#stacksize#: specification parameter

(3) EQUIVALENCES
T.PUSH(a)E

conditions
length(T) < #stacksize#

equivalences
T.PUSH(a mod 255)
S1.PUSH(a mod 255) Wherr

length(T) = #stacksize# T = PUSH(b).S1

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
41 tracerole.slides 1 10/1/96

= McMaster University

T.POP=

T.TOP=

(4) VALUES
OUTPUT VALUES

V[top](T) =

RETURN VALUES

conditions equivalences
T=_ %empty%
T+ T1 where
- T=T1.PUSH(a
conditions equivalences
T=_ Y%empty%
T#_ T
conditions equivalences
T=_ %undefined%
a where
Tz T =T1.PUSH(@

Program Name, ~ Argument Ng

Value

TOP

Value top

42

tracerole.slides

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”

10/1/96

= McMaster University =

FIGURE 5: UNBOUNDED INTEGER TABLE LIST MODULE

TYPE IMPLEMENTED: <T/L>

(1) SYNTAX
OUTPUT VARIABLES
Variable Name Type
left <boolean>
right <boolean>
out <boolean>
current <integer>
ACCESS PROGRAMS
Program Name Value Arg#l
INSERT <integer>
ALTER <integer>
DELETE
EXLEFT <boolean>
EXRIGHT <boolean>
ouT <boolean>
GOLEFT
GORIGHT
CURRENT <integer>

(2) CANONICAL TRACES
canonical(T)» (T = [INSERT @], .[GOLEFT]}.,) O(m=n)

DICTIONARY

AUXILIARY FUNCTIONS

Function Name Value Arg#l

<tracep

Arg#2
<trace>

Arg#3 Arg#4 Arg#p
<trace> <tra¢e> <trgce>

parse <boolean

43

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

tracerole.slides 1 10/1/96

= McMaster University =

parse(S,S1,C,S2,G) =

T.DEL

T.ALTER(b) =

conditions equivalences
(S =S1.C.S2.G)
(S1=[INSERT @],)O(C = INSERT()J true
(82 = [INSERT B)]{_,) 0(G=[GOLEFT].,)
else false
(3) EQUIVALENCES
T.INSERT(a)=
conditions equivalences
count(T,INSERT) = count(T,GOLEFT) INSERT(a).T

count(T,INSERT) > count(T,GOLEFT

1.C.INSERT(a).S1.G where

T
)parse(T,Tl,C,Sl,G)

conditions

equivalences

count(T,INSERT) = count(T,GOLEFT

)

%noncurrent%

count(T,INSERT) > count(T,GOLEFT

T1.INSERT(b).S1.G where

arse(T,T1,INSERT(a),S1,G)

ETE=

conditions

equivalences

count(T,INSERT) = count(T,GOLEFT

)

%noncurrent%

count(T,INSERT) > count(T,GOLEFT

T1.51.G where
)parse(T,Tl,C,Sl,G)

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

44 tracerole.slides

10/1/96

= McMaster University =

= McMaster University

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
45 tracerole.slides

TEXLEFT=T V[right](T) =
T.EXRIGHT=T conditions value
T.OUT=T count(T,GOLEFT) >0 true
| T.GOLEFT= count(T,GOLEFT) 0 false
conditions equivalences
count(T,INSERT) = count(T,GOLEFT) %noleft% Vlout)(T) =
count(T,INSERT) > count(T,GOLEFT) T.GOLEFT conditions value
count(T,INSERT) = count(T,GOLEFT) true
T.GORIGHT= count(T,INSERT) > count(T,GOLEFT) false
conditions equwallences Vicurrent](T) =
count(T,GOLEFT) =0 %noright%
count(T,GOLEFT) > 0 T1where T = TL.GOLEFT conditions value
count(T,INSERT) = count(T,GOLEFT) %undefined%
T CURRENT = count(T,INSERT) > count(T,GOLEFT) Sarsvt\el?'lstl,'el,INSERT(a),Sl,G)
conditions equivalences
count(T,INSERT) = count(T,GOLEFT) %noncurrent% RETURN VALUES
count(T,INSERT) > count(T,GOLEFT) T
Program Name, Argument No Value
EXLEFT Value left
EXRIGHT Value right
(4) VALUES
ouT Value out
OUTPUT VALUES CURRENT Value current
| Vlist)(T) =
conditions value
count(T,INSERT) - count(T,GOLEFT) >[1 true
count(T,INSERT) - count(T,GOLEFTR 1 false

| 10/1/96 | 46 tracerole.slides

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

10/1/96

= McMaster University =

FIGURE 6: UNBOUNDED UNIQUE INTEGER PRODUCER MODULE

TYPE IMPLEMENTED: <int>

(1) SYNTAX
OUTPUT VARIABLES
Variable Name Type
top <integer>
ACCESS PROGRAMS
Program Name Value
GETINT <integer>

(2) CANONICAL TRACES

canonical(T)«
(T=[(x_4) .GETINT]{. ;)0
(O TL,S1,82,xx)((T = T1.(%).SL.(%))-S2) - (X; <X;))

(3) EQUIVALENCES

T.VA[T].GETINT = T1.VA[T].GETINT.S1
where
| (T =T1.S1)dcanonical(T1.VA[T].GETINT.S1)

(4) VALUES
OUTPUT VALUES
V[intl(T) O{a |~ OT1,S1)(T = T1.(a).51) }

RETURN VALUES
Program Name| Argument Ng Value
| GETINT Value top
Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
47 tracerole.slides 1 10/1/96

= McMaster University =

FIGURE 7: UNBOUNDED PRIORITY INTEGER QUEUE MODULE

TYPE IMPLEMENTED: <pqueue>

(1) SYNTAX
OUTPUT VARIABLES
Variable Name Type
front <integer>
ACCESS PROGRAMS
Program Name Value Arg#l Arg#2

INSERT <integer> <integer>

REMOVE

FRONT <integer>

(2) CANONICAL TRACES

canonical(T)~

(T=[(%_y) . INSERT px)1'_;) O((Xy)) = (Yoempty%)y]

(0 T1,S1,p,p1,x.Xx1)((T = TLINSERT(p,x).(x).INSERT(p1,x1).S1
| (p<p1)O((p = p) O(x<x1))

(3) EQUIVALENCES
T.VA[T].INSERT(a,b)=

conditions equivalences
T=_ T.VA[T].INSERT(a,b)
S1.INSERT(a,b).(b).S2 where

(T = TLINSERT(p)] 1
> (T = S1.52)0
((P>2)0(p =39 Dx>b) | ¢1nonical(S1.INSERT(a,b).(b).S9)
(T = TLINSERT(p.x)]
(P<a)0(p=9 0(x<h))

TLINSERT(p,X).(x).INSERT(a,b)

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
48 tracerole.slides 1

10/1/96

= McMaster University =

T.VA[T].REMOVE =

conditions equivalences
l T=_ %empty%
T =T1.(y).INSERT(p,VA[T]) T1
T = TLINSERT(p,VA[T]).VA[T].S1)O
(0 S2,S3,u,v)((S1= S2.INSERT(u,88 - T1.51
(u=pO(v>VA[T])
T.VA[T].FRONT=T
(4) VALUES
OUTPUT VALUES
| VIfront](T,0)
conditions values
| T=_ %empty%
O=a where
T#_ (T = T1LINSERT(p,a).S1y
| (0.52,53,u,v)((T = S2.INSERT(u,v).S3 (U< p))

RETURN VALUES

Program Name| ~ Argument Ng Value

FRONT

Value front

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

49 tracerole.slides

10/1/96

= McMaster University =

FIGURE 8: MULTIPLE BINARY INTEGER TREE MODULE

TYPE IMPLEMENTED: <tree>

(1) SYNTAX
OUTPUT VARIABLES
Variable Name Type
tree <tree>
ACCESS PROGRAMS
Program Name Value Arg#l Arg#2 Arg#3 Arg#4
SETNIL <name>:0
SETTREE <name>:0 <integer>| <tree> <tree>|
ALTERNODE <name,tree>:D <path> <integer?
ALTERTREE <name,tree>:p <path> <tree>
GETNODE <integer> <tree> <path>
(2) CANONICAL TRACES
canonical(R)
(Tr=_)0

(T = SETNIL(R)) O
(Tr = SETTREE(R',U,V))

DICTIONARY
EXTERNAL TYPES

<path> PATH HOLDER MODULE

50

Communications Research Laboratory
Software Engineering Research Group

“connecting theory with practice”
tracerole.slides

10/1/96

= McMaster University = = McMaster University =

AUXILIARY FUNCTIONS change(R,P,j) =
conditions values
Program Name Value Arg#l Arg#2 Arg#3 ;
: validpath(R,P}J SETTREE(R’,j,U,V) where
validpath <boolean> <tree> <path> EMPTYPATH(P)
update <tree> <tree> <path> <tree> else false
change <tree> <tree> <path> <integerp
getval <integer> <tree> <path> update(R,P) =
conditions values
validpath(R,PJ i where
validpath(R,P) = EMPTYPATH(P) Tr = SETTREE(R’,i,U,V)
conditions values validpath(R,PJ getval(U,SUBPAHT(P)) where
(Tn = SETTREE(R..UV)) 0 GOLEFT(P) Tr = SETTREE(R’,i,U,V)
(EMPTYPATH(P)O ¢ validpath(R,PJ getval(V,SUBPAHT(P)) where
GOLEFT(P)O validpath(U,SUBPATH(P)D rue GORIGHT(P) Tk = SETTREE(R’,i,U,V)
GORIGHT(P)O validpath(V,SUBPATH(P)))
else false (3) EQUIVALENCES
(TR-SETNIL(‘R’) = SETNIL(R’)
update(R,P,X) = Tr.SETTREE(R’,i,U,V)= SETTREE('R,i,U,V)
conditions values Ty.SETTREE(R',i,U,V)=
validpath(R,PY] —
EMPTYPATH(P)O SETNIL(R’) conditions values
(Tx = SETNIL("X’)) R=‘U SETTREE('U',j,U,V)
validpath(R,PY] 'R ‘U Ty
EMPTYPATH(P)O SETTREE('X',i,U,V)
(Tx = SETTREE('X,i,U,V))
i Ty.SETTREE(R,i,U,V)=
validpath(R,P1] GOLEFT(P)OJ SETTREE(R',i,update(U,SUBPATH(P),X).V) v
(TR = SETTREE('R’,i,U,V)) conditions values
validpath(R,PYJ GORIGHT(P)O o ‘R =V SETTREE('V',j,U,V,
(Tg = SETTREE(R',U.V)) SETTREE('R’,i,U,update(V,SUBPATH(P),X)) (V',j,u.V)
R 2V Ty
Communications Research Laboratory Communications Research Laboratory
Software Engineering Research Group Software Engineering Research Group
“connecting theory with practice” “connecting theory with practice”

51 tracerole.slides 1 10/1/96] 52 tracerole.slides 1 10/1/96

= McMaster University =

TRALTERTREE(<'R’,$>,P,X)=

Tx.ALTERTREE

conditions

values

~validpath(R,P)

%invalidpath%

validpath(R,P)

update(R,P,X)

(<'R',$>,P X)=

conditions

equivalences

-validpath(R,P)

%invalidpath%

validpath(R,PJ ("X’ = ‘R’)

update(X,P,X)

validpath(R,P (‘X" #‘R’)

Tx

Tr.ALTERNODE(<'R’,$> P,i)=

Tr.GETTREE(<

conditions

equivalences

-validpath(R,P)

%invalidpath%

validpath(R,P)

change(R,P,i)

R’,$>,P,XE

conditions

equivalences

~validpath(R,P)

%invalidpath%

validpath(R,PYI (Tg = SETNIL(R))

%empty%

validpath(R,PYJ (Tg # SETNIL(R’))

TR

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

tracerole.slides

10/1/96

= McMaster University

(4) VALUES
OUTPUT VALUES
Vl[tree](Tg) = Tr

RETURN VALUES

Program Name, Argument N@

Value

—validpath(Arg#1,Arg#2

%invalidpath%

GETNODE Value -
validpath(Arg#1,Arg#2) getval(Arg#1,Arg#2)
Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”
54 tracerole.slides 1 10/1/96

= McMaster University =

FIGURE 9: PATH HOLDER MODULE

TYPE IMPLEMENTED: <path>

(1) SYNTAX
OUTPUT VARIABLES
Variable Name Type
empty <boolean>
left <boolean>
right <boolean>
ACCESS PROGRAMS
Program Name Value Arg#l
MAKEPATH <name>:0
ADDPATH <name,path>:(Q <char>
SUBPATH <name,path>:
EMPTYPATH | <boolean> <path>
GOLEFT <boolean> <path>
GORIGHT <boolean> <path>

(2) CANONICAL TRACES
canonical(R) « (Tp=_) 0(Tp=MAKEPATH(P’).[ADDPATH(<'P’ $>,c)Ii"- 1)

(3) EQUIVALENCES

Tp.MAKEPATH('P’) = MAKEPATH('P’)

Tp.EMPTYPATH($)=

conditions values
Tp=_ %invalidpath%
Tp# _ Tp

55

tracerole.slides

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

10/1/96

= McMaster University =

Tp.GOLEFT($)=

Tp.GORIGHT($)=

Tp. ADDPATH(<'P’,$>,c) =

conditions equivalences
Tp=_ Y%invalidpath%
TpZ _ Tp

conditions equivalences
Tp=_ %invalidpath%
Tp#_ Tp

conditions equivalences
Tp=_ %invalidpath%

(TpZz)0 £1) OC#T)

%wrongdirection

(Tp#_)0O((c 2'17) O(c#'r))

T p.ADDPATH(<'P’$>)

Tp.SUBPATH(<'P’ $>)=

conditions

equivalences

Tp=_

%invalidpath%

Tp = MAKEPATH(P)

%emptypath%

Tp = MAKEPATH(P"). ADDPATH(<'P’ $>,0) T1p

TpADDPATH(<'P’ $>.C)

56

tracerole.slides

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

10/1/96

= McMaster University

(4) VALUES
OUTPUT VALUES
V[empty](Tp) =
conditions equivalences
Tp=_ %undefined%
Tp = MAKEPATH(P’) true
false

Tp = MAKEPATH(P’).ADDPATH(<"P",$>,0). T1p

Vileft)(Tp) =

conditions equivalences

Tp=_ %undefined%
Tp = MAKEPATH('P').ADDPATH(<'P’,$>,'1").T1p true
false

else

V[rightl(Tp) =

conditions equivalences
Tp=_ %undefined%
Tp= MAKEPATH('P’).ADDPATH(<'P",$>,T').T1p true
else false
RETURN VALUESS
Program Name| Argument Ng Value
EMPTYPATH Value empty
GOLEFT Value left
GORIGHT Value right

57

tracerole.slides

Communications Research Laboratory
Software Engineering Research Group
“connecting theory with practice”

10/1/96

