SE 2A A4 Winter 2007
Software Design Exercise 5

Instructor: William M. Farmer

Assigned: 16 March 2007
Files due: 30 March 2007
Lab report due: 5 April 2007

Revised: 28 March 2007

The purpose of this software design exercise is to write a Java program that
creates an abstract data type (ADT) of lists. The program will consist of a
package named exerciseb that contains the following four files:

1. List. java
2. ListPlus. java
3. Element. java

4. BadIndexException. java

The first two files will be modules represented as a Java classes. They will
be written by the student. The third and fourth files are posted on the
course web site with this exercise.

Background

A list is a data structure that stores a finite sequence of values. The empty
list is the empty sequence, i.e., the sequence that has no members. nil is the
0-ary function that returns the empty list. cons is the function that, given

a value x and a list [zg,...,=,], returns the list [z, x¢,...,z,]. member is
the function that, given an integer ¢ and a list k, returns the i-th member
of the k. If k = [zg,...,zy], then member(i, k) is z; if 0 < i < n and is

undefined if k is the empty list, i < 0, or n < ¢. take is the function that,
given an integer ¢ and a list k, returns the list that is obtained by taking
the first ¢ members of k and dropping the rest. If k = [zg,...,z,], then
take(i, k) = [zg,...,zi—1] if 0 < i < n, take(i,k) = kif n+1 < 4, and
is undefined if ¢ < 0. drop is the function that, given an integer ¢ and a
list k, returns the list that is obtained by dropping the first ¢ members of
k and taking the rest. If k = [xq,..., 2], then drop(i, k) = [z;,...,zy,] if
0 < i < n,drop(i, k) is the empty list if n + 1 <4, and is undefined if i < 0.

Step 1

Write a module that is a class named List. It should:

1. Define an object of type List that represents a list of objects of type
Element indexed by values of type int.



2. Define four class methods for constructing objects of type List.

3. Implement the interface Element so that lists of lists can be con-
structed.

The List class should contain no public fields and only the following public
methods:

e A selector

public Element getMember (int i)
throws BadIndexException;

that implements the member function defined above. (Notice that this
is a method of a List object.)

e A constructor
public static List nil();

that implements the nil function defined above.

e A constructor
public static List cons(Element x, List k);

that implements the cons function defined above.

e A constructor

public static List take(int i, List k)
throws BadIndexException;

that implements the take function defined above.

e A constructor

public static List drop(int i, List k)
throws BadIndexException;

that implements the drop function defined above.

e The methods
public boolean same(Element e);
and
public String toString();

from the Element interface.



The implementation of your module is required to:

1.

Store all constructed objects of type List in a linked list. Create your
own linked list data structure. In particular, do not use the Java class
java.util.LinkedList.

. The objects in the linked list do no need to be sorted.

For any two objects k1 and ko of type List stored in the linked list,
ki.same (ko) must be false. This means that, if a method is required
to return a List object that is not the “same” as an object that has
already been created, the method should create the List object and
insert it into linked list at the correct place. Otherwise, the List
object should be found in the linked list.

Nothing in your implementation should limit the number of List ob-
jects that can be stored in the linked list.

Step 2

Write a module that is a subclass and definitional extension of List named
ListPlus. It should contain no public fields and only the following public
methods:

e A predicate

public static boolean isEmpty(List k);

that returns true iff k is the empty list.

e A selector

public static Element getHead(List k)
throws BadIndexException;

that returns getMember (0,k).

e A selector

public static List getTail(List k);

that returns drop(1,k).

e A selector

public static int getLength(List k);

that returns the length of k. The length of the empty list is 0.



o A selector
public static int getHeight(List k);

that returns the height of k viewed as a binary tree where, if k is not
empty, getHead(k) and getTail(k) are the left and right subtrees of
k, respectively. The height of the empty list is 0.

e A constructor
public static List reverse(List k);

that returns the object of type List whose members are the reverse
of the members of k.

Step 3

Submit your List.java and ListPlus. java files using subversion. Your
List. java will be tested with a ListPlus.java file written by the TAs,
and your ListPlus.java will be tested with a List.java file written by
the TAs. You must finish this step no later than 23:59 on Friday, March 30,
2007.

Step 4
Write a report that includes the following:
1. Your name and MAC ID.
2. Your List.java and ListPlus. java files.

3. A discussion of what you learned doing the exercise. List any problems
you had with (1) your program and (2) the specification of the two
modules. Discuss how these problems could have been avoided.

4. A copy of the part of your log book relevant to this software design
exercise.

The lab report is due no later than the beginning of the lecture on Thursday,
April 5.

Notes:

1. Please put your name and MAC ID at the top of each of your source
files.

2. Your program must work on birkhoff when compiled by javac.

3. All fields and methods in your classes should be designated as either
private or public except for the constructor for the List class which
should have no designation.



