
SE 2AA4 Winter 2007

01 Software Engineering as an
Engineering Discipline

William M. Farmer

Department of Computing and Software
McMaster University

4 January 2007



What is Software Engineering?

An area of engineering that deals with the development of
software systems that:

I Are large or complex.
I Exist in multiple versions.
I Exist for large periods of time.
I Are continuously being modified.
I Are built by teams.

Software engineering is the “application of a systematic,
disciplined, quantifiable approach to the development,
operation, and maintenance of software” (IEEE 1990).
D. Parnas (1978)—the father of the McMaster software
engineering program—said it is “multi-person
construction of multi-version software”.
Like other areas of engineering, software engineering relies
heavily on mathematical techniques

I Logic and discrete mathematics are more important than
continuous mathematics. 2



Software Engineering in System Design

A physical system is often controlled by a software system
called an embedded system.

As a result, software engineering is often a crucial part of
system design.

Examples of embedded systems:

I Cell phones.
I Nuclear power plants.
I Automobiles.
I Aircraft.
I Programmable household devices.
I MP3 players.
I Radio Frequency Identification (RFID) tags.

Embedded systems are rapidly appearing everywhere.

The developers of software for an embedded system need
to understand both the software and the physical device.

3



Example: Therac-25 (1)

The Therac-25 was a radiation therapy machine for
treating cancer.

I Produced by the Atomic Energy of Canada Limited
(AECL).

I Controlled by software.

How it worked:

I Provided both electron beam and X-ray treatment.
I The machine produced low- to high-energy electron

beams.
I X-rays were produced by rotating a target into the path

of a high energy electron beam.

Used in several clinics across North America.

4



Example: Therac-25 (2)

5



Example: Therac-25 (3)

In six separate incidents in the 1980s, Therac-25 machines
delivered overdoses of radiation causing severe physical
damage or even death to the patients being treated.

I The second incident, which took place in Hamilton,
resulted in an administration of 13,000–17,000 rads of
radiation (200 rads is a regular treatment and 1000 rads
can be fatal).

I Three patients ultimately died from radiation poisoning.

What went wrong:

I Software failed to detect that the target was not in place.
I Software failed to detect that the patient was receiving

radiation.
I Software failed to prevent the patient from receiving an

overdose of radiation.

6



Example: Therac-25 (4)

Causes of the failure:

Inadequate software design.

Inadequate software development process.

I Coding and testing done by only one person.
I No independent review of the computer code.
I Inadequate documentation of error codes.
I Poor testing procedures.

Software was ignored during reliability modeling.

No hardware interlocks to prevent the delivery of
high-energy electron beams when the target was not in
place.

7



The Great Gulf

Engineers do not sufficiently understand or care about
software.

I Many of the basic principles of software design and
development are largely unknown to engineers.

I Engineers often do not appreciate the challenges and
dangers inherent in software for embedded systems.

Software developers lack engineering training and
professionalism.

I There is an entrenched culture of producing software
without any guarantee whatsoever.

I There is no system for certifying either software or
software developers.

I Most software developers lack the engineering
background needed to produce software for embedded
systems.

8



Challenges and Opportunities for Engineering

Challenges:

I Engineers need to design systems that have safe, correct,
high-quality software.

I Software engineers need to produce software they can
guarantee.

Opportunities:

I Software tools can greatly enhance the capabilities of
engineers.

I Software can greatly increase the effectiveness of the
devices engineers design.

9



Attributes of a Good Software Engineer

Is a good engineer!

Can program in the large as well as in-the-small.

Has a solid understanding of computing and software.

Is comfortable with working with models at different
levels of abstraction.

Can communicate and work effectively with other team
members.

10



Software Development Process

A rational development process is needed to produce
quality software.

Any proposed rational process is necessarily an
idealization.

I Humans inevitably make errors.
I Communication between humans is imperfect.
I Many things are not understood at the start.
I Supporting technology always has limitations.
I Requirements change over time.

11



Software Presentation

Every software product should include documentation
that presents the product to clients, reviewers, users, and
maintainers.

It is useful to produce documentation that makes it
appear as if the software product were developed by a
rational process.

I Mathematicians have long followed this approach in
presenting their results.

I See D. Parnas, “A Rational Design Process: How and
Why to Fake It”, in: D. Hoffman and D. Weiss, Software
Fundamentals, Addison Wesley, 2001.

12



Software Development Phases

1. Requirements: What is the problem that needs to be
solved? What are the product requirements that need to
be satisfied?

2. Design: How will the problem be solved? How will the
product requirements be satisfied?

3. Implementation: What is a solution to the problem?
What is an executable implementation of the design?

4. Verification: What behavior does the product exhibit? Is
the behavior correct?

5. Delivery and Maintenance: How will the product be
delivered? What needs to be maintained? How will it be
maintained?

13



Software Life Cycle Models

Waterfall model:

I Development follows the logical order of the phases
given above in a linear fashion.

I Is an idealization of the software development process
that is rarely realized.

Other life cycle models:

I Refinement
I Incremental
I Spiral
I Prototyping

14


