SE 2AA4 Winter 2007

01 Software Engineering as an
Engineering Discipline

William M. Farmer

Department of Computing and Software
McMaster University

4 January 2007

McMaster
University §% 7




What

is Software Engineering?

An area of engineering that deals with the development of
software systems that:

» Are large or complex.

» Exist in multiple versions.

» Exist for large periods of time.

» Are continuously being modified.

» Are built by teams.
Software engineering is the “application of a systematic,
disciplined, quantifiable approach to the development,
operation, and maintenance of software” (IEEE 1990).
D. Parnas (1978)—the father of the McMaster software
engineering program—said it is “multi-person
construction of multi-version software” .
Like other areas of engineering, software engineering relies
heavily on mathematical techniques

» Logic and discrete mathematics are more important than
continuous mathematics. 2



Software Engineering in System Design

@ A physical system is often controlled by a software system
called an embedded system.

@ As a result, software engineering is often a crucial part of
system design.

@ Examples of embedded systems:

vV v v v v Y

>

Cell phones.

Nuclear power plants.

Automobiles.

Aircraft.

Programmable household devices.

MP3 players.

Radio Frequency ldentification (RFID) tags.

@ Embedded systems are rapidly appearing everywhere.

@ The developers of software for an embedded system need
to understand both the software and the physical device.

3



Example: Therac-25 (1)

@ The Therac-25 was a radiation therapy machine for
treating cancer.

» Produced by the Atomic Energy of Canada Limited
(AECL).
» Controlled by software.

@ How it worked:

» Provided both electron beam and X-ray treatment.
» The machine produced low- to high-energy electron

beams.
» X-rays were produced by rotating a target into the path

of a high energy electron beam.

@ Used in several clinics across North America.



Example: Therac-25 (2)

"y

Electron Mode X-Ray Mode




Example: Therac-25 (3)

@ In six separate incidents in the 1980s, Therac-25 machines
delivered overdoses of radiation causing severe physical
damage or even death to the patients being treated.

» The second incident, which took place in Hamilton,
resulted in an administration of 13,000-17,000 rads of
radiation (200 rads is a regular treatment and 1000 rads
can be fatal).

» Three patients ultimately died from radiation poisoning.

@ What went wrong:

» Software failed to detect that the target was not in place.

» Software failed to detect that the patient was receiving
radiation.

» Software failed to prevent the patient from receiving an
overdose of radiation.



Example: Therac-25 (4)

Causes of the failure:
@ Inadequate software design.

@ Inadequate software development process.

» Coding and testing done by only one person.
» No independent review of the computer code.
» Inadequate documentation of error codes.

» Poor testing procedures.

@ Software was ignored during reliability modeling.

@ No hardware interlocks to prevent the delivery of
high-energy electron beams when the target was not in
place.



The Great Gulf

@ Engineers do not sufficiently understand or care about
software.

» Many of the basic principles of software design and
development are largely unknown to engineers.

» Engineers often do not appreciate the challenges and
dangers inherent in software for embedded systems.

@ Software developers lack engineering training and
professionalism.

» There is an entrenched culture of producing software
without any guarantee whatsoever.

» There is no system for certifying either software or
software developers.

» Most software developers lack the engineering

background needed to produce software for embedded
systems.



Challenges and Opportunities for Engineering

@ Challenges:

» Engineers need to design systems that have safe, correct,
high-quality software.

» Software engineers need to produce software they can
guarantee.

@ Opportunities:

» Software tools can greatly enhance the capabilities of

engineers.
» Software can greatly increase the effectiveness of the

devices engineers design.



Attributes of a Good Software Engineer

Is a good engineer!
Can program in the large as well as in-the-small.
Has a solid understanding of computing and software.

Is comfortable with working with models at different
levels of abstraction.

Can communicate and work effectively with other team
members.

10



Software Development Process

@ A rational development process is needed to produce
quality software.

@ Any proposed rational process is necessarily an
idealization.

» Humans inevitably make errors.
Communication between humans is imperfect.
Many things are not understood at the start.
Supporting technology always has limitations.

>
>
>
» Requirements change over time.



Software Presentation

@ Every software product should include documentation
that presents the product to clients, reviewers, users, and

maintainers.

@ It is useful to produce documentation that makes it
appear as if the software product were developed by a
rational process.

» Mathematicians have long followed this approach in

presenting their results.
» See D. Parnas, “A Rational Design Process: How and
Why to Fake It", in: D. Hoffman and D. Weiss, Software

Fundamentals, Addison Wesley, 2001.

12



Software Development Phases

1.

Requirements: What is the problem that needs to be
solved? What are the product requirements that need to
be satisfied?

. Design: How will the problem be solved? How will the

product requirements be satisfied?

Implementation: What is a solution to the problem?
What is an executable implementation of the design?

Verification: What behavior does the product exhibit? s
the behavior correct?

Delivery and Maintenance: How will the product be
delivered? What needs to be maintained? How will it be
maintained?

13



Software Life Cycle Models

@ Waterfall model:

» Development follows the logical order of the phases
given above in a linear fashion.

» |s an idealization of the software development process
that is rarely realized.

@ Other life cycle models:

» Refinement
» |Incremental
» Spiral

» Prototyping



