
SE 2AA4 Winter 2007

02 Software Qualities

William M. Farmer

Department of Computing and Software
McMaster University

15 January 2007



How Software Differs from other Engineering

Products

Intangible.

I Not physical.
I Hard to visualize.
I Hard to separate what is key from what is incidental.

Malleable.

I Easy to modify.
I But modification requires care.

Human intensive.

I Software production is 99.9% engineering,
0.1% manufacturing.

I Software is essentially just documentation.

2



Software Qualities

The goal of software engineering is to produce quality
software. But what are the desirable qualities that
software should possess?

External vs. internal software qualities.

I External qualities are visible to the user.
I Internal qualities are visible to the developer.
I Internal qualities help external qualities to be achieved.

Product vs. process qualities.

I Product qualities concern the product itself.
I Process qualities concern how the product is developed.
I Process qualities help product qualities to be achieved.

The importance of a particular software quality varies
across software products.

I For example, external qualities are not as important for
embedded systems as for desktop software.

3



Correctness

A software product is correct if it satisfies its
requirements specification.

Correctness is extremely difficult to achieve because:

I The requirements specification my be imprecise,
ambiguous, inconsistent, based on incorrect knowledge,
or nonexistent.

I Requirements often compete with each other.
I It is virtually impossible to produce “bug-free” software.
I It is very difficult to verify or measure correctness.

If the requirements specification is formal, correctness can
in theory and possibly in practice be:

I Mathematically defined.
I Proven by mathematical proof.
I Disproven by counterexample.

4



Reliability

A software product is reliable if it usually does what it is
intended to do.

Correctness is an absolute quality, while reliability is a
relative quality.

I A software product can be both reliable and incorrect.

Reliability can be statistically measured.

Software products are usually much less reliable than
other engineering products.

5



Robustness

A software product is robust if it behaves reasonably even
in unanticipated or exceptional situations.

A correct software product need not be robust.

I Correctness is accomplished by satisfying requirements.
I Robustness is accomplished by satisfying unstated

requirements.

6



Performance

The performance of a computer product is the efficiency
with which the product uses its resources (memory, time,
communication).

Performance can be evaluated in three ways:

1. Empirical measurement.
2. Analysis of a analytic model.
3. Analysis of a simulation model.

Poor performance often adversely affects the usability and
scalability of the product.

7



Usability

The usability of a software product is the ease with which
an expected human user can use the product.

I Usability depends strongly on the capabilities and
preferences of the user.

The user interface of a software product is usually the
principal factor affecting the product’s usability.

Human computer interaction (HCI) is a major
interdisciplinary subject concerned with understanding and
improving interaction between humans and computers.

8



Verifiability

The verifiability of a software product is the ease with
which the product’s properties (such as correctness and
performance) can be verified.

Verifiability can be both an internal and external quality.

9



Maintainability

The maintainability of a software product is the ease with
which the product can be modified after its initial release.

Maintenance costs can exceed 60% of the total cost of
the software product.

There are three main categories of software maintenance:

1. Corrective: Modifications to fix residual and introduced
errors.

2. Adaptive: Modifications to handle changes in the
environment in which the product is used.

3. Perfective: Modifications to improve the qualities of the
software.

Software maintenance can be divided into two separate
qualities:

1. Repairability: The ability to correct defects.
2. Evolvability: The ability to improve the software and to

keep it current.
10



Reusability

A software product or component is reusable if it can be
used to create a new product.

Reuse comes in two forms:

1. Standardized, interchangeable parts.
2. Generic, instantiable components.

Increasing reusability decreases production cost.

Reusability is a bigger challenge in software engineering
than in other areas of engineering.

11



Portability

A software product is portable if it can run in different
environments.

The environment for a software product includes the
hardware platform, the operating system, the supporting
software, and the user base.

Since environments are constantly changing, portability is
often crucial to the success of a software product.

Some software, such as operating systems and compilers,
is inherently machine specific.

12



Understandability

The understandability of a software product is the ease
with which the requirements, design, implementation,
documentation, etc. can be understood.

Understandability is an internal quality that has an impact
on other qualities such as verifiability, maintainability, and
reusability.

There is often a tension between the understandability
and the performance of a software product.

Some useful software products completely lack
understandability (e.g., those for which the source code is
lost).

13



Interoperability

A software system is interoperable if it can work with
other systems.

A software product is an open system if parts of the
system—such as interface specifications, protocols, and
source code—are available to the public.

Open systems tend to be more interoperable than
nonopen systems.

14



Productivity

The productivity of a software development process is the
measure of how efficiently the process produces software.

Productivity highly depends on the skills and organization
of the development team.

Productivity is very hard to measure.

I The number of lines of code per unit time is a terrible
metric for measuring software productivity.

Productivity can be greatly increased by the use of
development tools, environments, and methods.

Software reuse decreases productivity in the short term,
but increases productivity in the long term.

15



Timeliness

The timeliness of a software development process is the
ability to deliver a product on time.

Timeliness is difficult to achieve in software development.

Important trade-off: Should a software product with flaws
be delivered on time or should it be delivered late without
flaws?

Standard project management techniques are difficult to
apply to software engineering because:

I It is difficult to define the requirements for software.
I It is difficult to quantify software.
I Requirements for software tend to continuously change

as the project progresses.

Incremental delivery is one technique for achieving
timeliness.

16



Visibility

A software development process is visible if the steps of
the process and the product itself are documented.

I The documentation should be accessible to the whole
development team as well as to management.

Benefits of visibility:

I Promotes communication.
I Facilitates planning.
I Protects against personnel changes.

17



Software Systems requiring Special Qualities

Information systems store and retrieve data.

I Information security (privacy, integrity, and availability)
is a key quality.

Real-time systems respond to external events within a
strict time-frame.

I Safety is an important quality for many real-time
systems.

Distributed systems consist of independent subsystems
connected by communication networks.

I Qualities important to distributed systems: concurrency
control, parallelizability, fault tolerance, code mobility.

Embedded systems control physical devices.

I Usability and other human-oriented qualities are not as
important for embedded systems as for other software
systems.

18



Measurement of Quality

A software quality is only important if it can be measured.

I Without measurement there is no basis for claiming
improvement.

A software quality must be precisely defined before it can
be measured.

Most software qualities do not have universally accepted
metrics for measuring them.

19


