
SE 2AA4 Winter 2007

03 Software Engineering Principles

William M. Farmer

Department of Computing and Software
McMaster University

25 January 2007



Software Engineering Knowledge Units

A principle is a general concept that is widely applicable
in software engineering.

A method or technique is a specific approach to software
engineering.

A methodology is a coherent collection of methods and
techniques.

A tool is a device that supports the application of a
method, technique, or methodology.

2



Software Engineering Principles

Used to reduce complexity.

Form the basis for methods, techniques, methodologies,
and tools.

Can be used in all phases of software development.

Can be applied to both process and product.

All of the key software engineering principles are also key
principles of mathematics and engineering as a whole!

3



Key Principles

1. Rigor.

2. Formality.

3. Separation of concerns.

4. Modularity.

5. Abstraction.

6. Anticipation of change.

7. Generality.

8. Incrementality.

4



Rigor

An argument is valid if the conclusion is a logical
consequence of the premises.

Rigor is precise reasoning characterized by:

I Only unambiguous language is used.
I There are no hidden assumptions.
I Care is taken to ensure that all arguments are valid.

Rigor is achieved through the use of mathematics and
logic.

Rigor should be systematically employed throughout the
whole software development process.

5



Formality

Formality is reasoning in a formal system consisting of:

I A language with a formal syntax and a precise semantics.
I A set of syntactic rules.

A formal system enables reasoning to be mechanized:

I Reasoning is performed mechanically with computer
assistance.

I Arguments are machine checked.
I Parts of the reasoning are automated.

The use of formality in software development has a high
cost:

I The learning curve is very high.
I Tool support and knowledge bases are inadequate.
I The amount of detail involved is often overwhelming.

Nevertheless, formality is the promise of the future!

6



Separation of Concerns

Separation of concerns is the principle that different
concerns should be isolated and considered separately.

I Goal: To reduce a complex problem to a set of simpler
problems:

I Enables parallelization of effort.

Concerns can be separated in various ways.

I Different concerns are considered at different times.
I Software qualities are considered separately.
I A software system is considered from different views.
I Parts of a software systems are considered separately.

Dangers:

I Opportunities for global optimizations may be lost.
I Some issues cannot be safely isolated (e.g., security).

7



Separation of Concerns: Examples

Separation of requirements from design.

Separation of design from implementation.

Decomposition of a system into a set of modules.

The distinction between a module’s interface and its
implementation.

8



Modularity

A modular system is a complex system that is divided into
smaller parts called modules.

Modularity enables the principle of separation of concerns
to be applied to two ways:

1. Different parts of the system are considered separately.
2. The parts of the system are considered separately from

their composition.

Modular decomposition is the top-down process of
dividing a system into modules.

I This is the “divide and conquer” approach.

Modular composition is the bottom-up process of building
a system out of modules.

I This is the “interchangeable parts” approach.

9



Properties of a Good Module

To achieve the benefits of modularity, a software engineer
must design modules with the two properties:

1. High cohesion: The components of the module are
closely related.

2. Low coupling: The module does not strongly depend on
other modules.

This allows the modules to be treated in two ways:

1. As a set of interchangeable parts.
2. As individuals.

10



Abstraction

Abstraction is the process of focusing on what is
important while ignoring what is irrelevant.

I Abstraction is a special case of separation of concerns.

Abstraction produces a model of an entity in which the
irrelevant details of the entity are left out.

I Many different models of the same entity can be
produced by abstraction. The models differ from each
other by what is considered important and what is
considered irrelevant.

I Repeated application of abstraction produces a hierarchy
of models.

Refinement is the opposite of abstraction.

Overabstraction produces models that are difficult to
understand because they are missing so many details.

11



Anticipation of Change

Anticipation of change is the principle that future change
should be anticipated and planned for.

I Also called design for change.

Techniques for dealing with change:

1. Configuration management: Manage the configuration
of the software so that it can be easily modified as the
software evolves.

2. Information hiding: Hide the things that are likely to
change inside of modules.

3. Little languages: Create little languages that can be
used to solve families of related problems.

Since software is constantly changing, anticipation of
change is crucial for the software development process.

12



Generality

The principle of generality is to solve a more general
problem than the problem at hand whenever possible.

Advantages:

I The more general a solution is the more likely that is can
be reused.

I Sometimes a general problem is easier to solve than a
more specific problem.

Disadvantages:

I A general solution may be less efficient than a more
specific solution.

I A general problem may cost more to solve than a more
specific problem.

Abstraction is often used to extract a general solution
from specific solution.

13



Incrementality

The principle of incrementality is to attack a problem by
producing successively closer approximations to a solution.

Enables the development process to receive feedback and
the requirements to be adjusted accordingly.

Techniques for developing software incrementally:

1. Rapid prototyping. Produce a prototype that is “thrown
away” later.

2. Refinement. A high-level artifact (like a requirements
specification or a higher-level design) is incrementally
refined into a low-level artifact (like a lower-level design
or an implementation).

14


