SE 2AA4 Winter 2007

03 Software Engineering Principles

William M. Farmer

Department of Computing and Software
McMaster University

25 January 2007

7y

G/



Software Engineering Knowledge Units

@ A principle is a general concept that is widely applicable
In software engineering.

@ A method or technique is a specific approach to software
engineering.

@ A methodology is a coherent collection of methods and
techniques.

@ A tool is a device that supports the application of a
method, technique, or methodology.



Software Engineering Principles

@ Used to reduce complexity.

@ Form the basis for methods, techniques, methodologies,
and tools.

@ Can be used in all phases of software development.
@ Can be applied to both process and product.

@ All of the key software engineering principles are also key
principles of mathematics and engineering as a wholel



Key Principles

©© N oS O =

Rigor.
Formality.
Separation of concerns.
Modularity.
Abstraction.
Anticipation of change.
Generality.
Incrementality.



Rigor
@ An argument is valid if the conclusion is a logical

consequence of the premises.

@ Rigor Is precise reasoning characterized by:

» Only unambiguous language is used.
» There are no hidden assumptions.
» (Care is taken to ensure that all arguments are valid.

@ Rigor is achieved through the use of mathematics and
logic.

@ Rigor should be systematically employed throughout the
whole software development process.



Formality

@ Formality is reasoning in a formal system consisting of:

» A language with a formal syntax and a precise semantics.
» A set of syntactic rules.

@ A formal system enables reasoning to be mechanized:

» Reasoning is performed mechanically with computer

assistance.
» Arguments are machine checked.
» Parts of the reasoning are automated.

@ The use of formality in software development has a high
cost:

» The learning curve is very high.
» Tool support and knowledge bases are inadequate.
» The amount of detail involved is often overwhelming.

@ Nevertheless, formality is the promise of the future!



Separation of Concerns

@ Separation of concerns is the principle that different
concerns should be isolated and considered separately.

» Goal: To reduce a complex problem to a set of simpler
problems:
» Enables parallelization of effort.

@ Concerns can be separated in various ways.

» Different concerns are considered at different times.
» Software qualities are considered separately.

» A software system is considered from different views.
» Parts of a software systems are considered separately.

@ Dangers:

» Opportunities for global optimizations may be lost.
» Some issues cannot be safely isolated (e.g., security).



Separation of Concerns: Examples

@ Separation of requirements from design.
@ Separation of design from implementation.
@ Decomposition of a system into a set of modules.

@ [he distinction between a module’s interface and its
implementation.



Modularity

@ A modular system is a complex system that is divided into
smaller parts called modules.

@ Modularity enables the principle of separation of concerns
to be applied to two ways:

1. Different parts of the system are considered separately.
2. The parts of the system are considered separately from
their composition.

@ Modular decomposition is the top-down process of
dividing a system into modules.

» This is the “divide and conquer” approach.

@ Modular composition is the bottom-up process of building
a system out of modules.

» This is the “interchangeable parts’ approach.



Properties of a Good Module

@ To achieve the benefits of modularity, a software engineer
must design modules with the two properties:

1. High cohesion: The components of the module are
closely related.

2. Low coupling: The module does not strongly depend on
other modules.

@ This allows the modules to be treated in two ways:

1. As a set of interchangeable parts.
2. As individuals.

10



Abstraction

@ Abstraction is the process of focusing on what is
iImportant while ignoring what is irrelevant.

» Abstraction is a special case of separation of concerns.

@ Abstraction produces a model of an entity in which the
irrelevant details of the entity are left out.

» Many different models of the same entity can be
produced by abstraction. The models differ from each
other by what is considered important and what is
considered irrelevant.

» Repeated application of abstraction produces a hierarchy
of models.

@ Refinement is the opposite of abstraction.

@ Overabstraction produces models that are difficult to
understand because they are missing so many detalils.

11



Anticipation of Change

@ Anticipation of change is the principle that future change
should be anticipated and planned for.

» Also called design for change.
@ Techniques for dealing with change:

1. Configuration management: Manage the configuration
of the software so that it can be easily modified as the
software evolves.

2. Information hiding: Hide the things that are likely to
change inside of modules.

3. Little languages: Create little languages that can be
used to solve families of related problems.

@ Since software is constantly changing, anticipation of
change is crucial for the software development process.

12



Generality

@ The principle of generality is to solve a more general
problem than the problem at hand whenever possible.

@ Advantages:

» The more general a solution is the more likely that is can
be reused.

» Sometimes a general problem is easier to solve than a
more specific problem.

@ Disadvantages:

» A general solution may be less efficient than a more
specific solution.

» A general problem may cost more to solve than a more
specific problem.

@ Abstraction is often used to extract a general solution
from specific solution.

13



Incrementality

@ The principle of incrementality is to attack a problem by
producing successively closer approximations to a solution.

@ Enables the development process to receive feedback and
the requirements to be adjusted accordingly.

@ Techniques for developing software incrementally:

1. Rapid prototyping. Produce a prototype that is “thrown
away' later.

2. Refinement. A high-level artifact (like a requirements
specification or a higher-level design) is incrementally
refined into a low-level artifact (like a lower-level design
or an implementation).

14



