SE 2AA4 Winter 2007

04 Software Modules

William M. Farmer

Department of Computing and Software
McMaster University

13 February 2007

e

&5

What is a Software Module?

@ Modules are relatively self-contained systems that can be
combined to make large systems (Parnas).

@ Design is often the assembly of many previously designed
modules (Parnas).

» Modules are interconnectable and interchangeable parts.
» Modules can be designed, implemented, tested, and
changed independently.

@ A software module i1s a cohesive collection of data and
procedures that provides a set of services to other client
modules.

» Programs and procedures are usually not modules.
» Modules usually have state.

Components of a Module

A software module has two components:
1. An interface that enables the module’s clients to use the
services the module provides.

2. An implementation of the interface that provides the
services offered by the module.

The Module Interface

@ A module’s interface can be viewed in various ways:

» As a set of services.
» As a contract between the module and its clients.
» As a language for using the module’s services.

@ The interface is exported by the module and imported by
the module’s clients.

@ An interface describes the data and procedures that
provide access to the services of the module.

The Module Implementation

@ A module’'s implementation is an implementation of the
module’s interface.

@ The implementation is hidden from other modules.

@ The interface data and procedures are implemented
together and may share data structures.

@ The implementation may utilize the services offered by
other modules.

Examples of Modules

@ Record.

» Consists of only data.
» Has state but no behavior.

@ Collection of related procedures

» Has behavior but no state.

@ Object.

» Consists of data (fields) and procedures (methods).
» Has state and behavior.

@ Abstract data structure.

» Consists of a collection of constructors, selectors, and
mutators.

@ Abstract data type (ADT).

» Consists of a collection of abstract data structures and a
collection of procedures that can be applied to them.

An Example Interface in C for a Stack

int stack_top();

int stack_height();

void stack_push(int element);
void stack_pop();

void stack_print();

/ *
/ *
/ *
/ *
/ *

selector * /
selector * /
mutator * /
mutator * /

print procedure */

The Principles of Modular Design (1)

1. Separation of Concerns.

» Different parts of the problem are handled by different
modules (horizontal decomposition)

» What (i.e., interface) is separated from how (i.e.,
implementation) (vertical decomposition)

2. Abstraction.
» The services that other modules need are expressed in

the interface.
» The implementation details that other modules do not

need are left out of the interface.
3. Anticipation of Change: Information Hiding Method

» Implementation details and design decisions likely to
change are hidden from other modules (design for
change).

» Each module’s implementation is a treated as a “secret”
(Parnas).

The Principles of Modular Design (2)

4. Generality.

» Modules are designed to solve general rather than
specific problems.

» Modules are intended to be reused and to be useful to as
wide a range of clients as possible.

5. Generality: Little Languages Method

» The interface is designed as a language that can solve a
family of problems instead of just a single problem.

» More abstract languages are defined in terms of more
concrete languages.

Hallmarks of a Good Module

The module has high cohesion (i.e., its components are
closely related).

The module has low coupling (i.e., it does not strongly
depend on other modules).

The interface is small and orthogonal.
The interface language is highly expressive.

What is likely to change in the module is hidden from
other modules.

The data structures of the implementation are accessible
only via the interface procedures.

10

Module Extensions

@ Let M; be a module with interface /; for i =1, 2.
@ M, is an extension of M; (and M is a submodule of M,)
If:
1. bk is an extension of /1 (i.e., I includes all the

components of /).
2. The implementation of M5 is an extension of the

implementation of Mj.

@ If M, is an extension of M;, then M, provides all the
services that M; provides.

11

Conservative Extensions

@ Let M; be a module with interface /; for i =1, 2.

@ M, is a conservative extension of M if:

1. M5 is an extension of Mj.
2. M5 has no access to the implementation of M; outside

of /1.
@ If M, is a conservative extension of My, then:

» The language of I will be an enrichment of the

language of .

» |» need not be small and orthogonal.

» |f the implementation of M; is changed without violating
the specification of /1, then the behavior of M> will not

violate the specification of b.

12

Definitional Extensions

@ Let M; be a module with interface /; for i =1, 2.

@ M, is a definitional extension of My if:

1. M, is a conservative extension of Mj.
2. The state of M, is always equal to the state of Mj.

@ If M, is a definitional extension of M, then:

» The components in I but not in /; will be defined in
terms of the components of /;.

» The components in I but not in /; can be “eliminated”
by replacing them with code written using only the
components in /.

13

Modules in the C Programming Language

@ C does not directly support modules, but modules can be
implemented in C using C's independent compilation
mechanism.

@ A module interface is expressed as a C header file (e.g.,
StackPlus.h).

» The header file contains declarations of the types,
variables, constants, and procedure signatures
(prototypes) that are to be exported.

» Note: Header files are often used to contain macros,
constants, and types that are used by several code files.

@ A module implementation is expressed as a C code file
(e.g., StackPlus.c).

@ When compiling with gcc, use the following options:

» —ansi -pedantic to conform to ANSI C.
» -Wall to list all warnings.
14

Header Files as Module Interfaces

@ Required module interfaces are imported with #include.

» Example: #include "Stack.h"

@ Interface types are declared with C type declarations.

» Example: typedef int Weight;

@ Interface constants are declared with #define or with C
constant variable declarations.

» Example: #define TRUE 1
» Example: const double PI = 3.14159265358979;

@ The signatures of interface procedures are declared with
C function prototypes.
» Example: void stack_push(int element) ;
@ External variables can be declared, but they are not
recommended.

@ C function definitions should never be in header files.
15

Code Files as Module Implementations

@ Required module interfaces are imported with #include.

» Example: #include "Stack.h"
» All external objects should be components of module
interfaces (and thus there should be no use of extern).

@ Interface procedures are implemented by C function
definitions in the code file.

@ All local types, constants, variables and procedures are
declared in the code file.

» Local variables and procedures should be marked with
the static attribute to restrict their scope to the file

they are declared in.
» Example: static int x1;

16

Modules in the Java Programming Language

@ A Java object is a module:

» The interface is the object’s set of public fields and
methods.

» The implementation is the object’s entire set of fields
and methods.

@ A Java class is a module:

» The interface is the object’s set of public static fields
and methods.

» The implementation is the object’s entire set of static
fields and methods.

@ A Java class C is also a module specification:

» Each instance of C is an object (module) of the type of

C.

17

Module Extensions in Java

@ Let (; be a subclass of (; that does not override any of
the methods of (;.

@ (, specifies a subset of the set of modules specified by ;.

@ An instance O, of (, is a module extension of an instance
O; of (; (and O; a submodule of O5).

18

Java Abstract Classes as Module Interfaces
@ An abstract method is a method without an
Implementation.

@ An abstract class is a class marked as abstract that
cannot be instantiated but can be subclassed.

» A class with abstract methods must be an abstract class.

@ An abstract class can be used as a class specification.

@ An abstract class C with only abstract methods can be
used as a module interface.

» An implementation of C as a module interface is any
instance of a subclass of C.

19

Java Interfaces as Module Interfaces

@ A Java interface consists of a set of public constant and
method declarations.
» The interface name becomes a new reference type.
» An interface has no implementation at all.
» An interface cannot be instantiated.
@ A class implements an interface by defining the
interfaces’s methods.
» The constants of the interface are inherited.
» A class can simultaneously implement several interfaces.
@ Interfaces are good for recording similarities between
unrelated classes.
@ Key benefit of interfaces: A variable of an interface type /
may be bound to any object whose class implements /.
@ Viewed as a module interface, an implementation of a
Java interface [is any instance of any class that

iImplements /.
20

