SE 2AA4 Winter 2007

07 Verification

William M. Farmer

Department of Computing and Software
McMaster University

31 March 2007

S



The Problem

@ What behavior does the software product exhibit? Is the
behavior correct? Is the behavior acceptable?

@ Measures of software quality:

» Correctness: To what extend does the product satisfy its
requirements specification?

» Reliability: How probable is correct behavior?

» Trustworthiness: How probable is critical failure?

» Robustness: How well are unanticipated or exceptional
situations handled?

@ Forms of verification and analysis:

» |nspection.
» Testing.
» Mathematical verification.



Correctness

@ Full correctness is very difficult to achieve and even more
difficult to demonstrate.

@ Some lack of correctness must usually be accepted.

» |t can be possible to achieve and prove full correctness
for some simple software products.

» For most software products, full correctness is an
unaffordable dream.

@ Full correctness is an important goal but rarely necessary.

@ Inspection, testing, and mathematical verification can
show incorrectness, but mathematical verification is
needed to show correctness.



Reliability
@ Reliability is a useful measure when:

All errors are considered equally important.
There are no critical failures.

The operating conditions are predictable.
We want to compare risks.

v v v Y%

@ Testing is most useful for measuring reliability.



Trustworthiness

Some systems have critical requirements that must be
fully satisfied by the software product.

» It can be useful to rank the requirements by how critical
they are.

Critical requirements may concern such things as:

» Safety to users and the environment.
» Information security.
» High cost of failure.

Inspection and mathematical verification are useful for
measuring trustworthiness, but testing is not.

Unreliable products are often accepted, but untrustworthy
products with critical requirements should never be
accepted.



Robustness

@ A correct software product need not be robust.

» Correctness is accomplished by satisfying requirements.
» Robustness is accomplished by satisfying unstated
requirements.

@ Robustness is difficult to measure.



Product Inspection

@ The full product, both documentation and code, should
be inspected.

@ The inspection should be systematic.

» Guided by checklists and questionnaires.

@ The inspection should be an active process.

» Inspectors use the product documents.

» They document their analysis and provide specifics.

» They produce their own product descriptions from the
code which they compare with the product
specifications.

@ The inspection should be performed by a small team that
includes people with different kinds of expertise.



Software Testing

@ Testing can show instances of incorrectness, but it is
usually not practical for demonstrating correctness and

trustworthiness.

» There are often an unbounded number of possible inputs

and environmental configurations.
» Only what is executable (code but usually not
specifications) can be tested.

@ Positive testing results are not, by themselves, an
indication of software quality.
@ Testing can be used to assess reliability.

@ The smallest components and the lowest levels of the
uses hierarchy should be tested first.

» Integration should be done only after the components
have been fully tested



Kinds of Code Testing

1. Blackbox testing.

» Based on the specification alone.

» Test cases chosen without looking at the code.
» Can be reused with a new implementation.

» Can be done independently of the designer.

2. Clearbox testing.

» Based on the code.
» Test cases chosen by looking at code.
» Tests the implementation mechanism.

3. Greybox testing.

» Intended for modules with internal data structures.
» Test cases chosen with respect to the internal data

structures.
» Gives better coverage than blackbox testing.



Kinds

of Test Case Selection

. Planned: Test cases selected to cover the behavior of the

code.

» Based on specification (blackbox).

» Based on code (clearbox).

» Based on internal data structures (graybox).

» Good for demonstrating incorrectness and
untrustworthiness.

. Statistical random: Test cases selected using an

operational profile.

» Only as good as the operational profile.
» Good for demonstrating reliability.

. Wild random: Test cases selected using a uniform random

distribution.

» Can find cases nobody thought of.
» Can violate assumptions yielding spurious results.

» Good for demonstrating robustness.
10



General Recommendations (Parnas)

1. Test all possible paths through the program.
» So every possible statement is tested at least once.
2. Test all data states.

3. Test all degenerate data states.

4. Test extreme cases.

» Try very large numbers.
» Try very small numbers.

5. Test erroneous cases.
6. Think of cases that nobody thinks of.

11



Mathematical Verification

@ Main idea: Use the mathematics process to analyze the
behavior of a software product.

>

Most effective for high-level design.
Requires significant human expertise.
Requires effective machine support.
Can be very expensive.

mathematics process consists of three activities:

. Model creation: Create mathematical models that

represent mathematical aspects of the world.

Model exploration: Explore the models by stating and
proving conjectures and by performing calculations.
Model connection. Connect the models to one another
so that results obtained in one model can be used in
other models.

12



Two Approaches

1. Informal but rigorous: Models are expressed using a
natural language and are explored by informal conjecture

proving and computation.

» All the work is done by humans.
» Usually not feasible for problems with many details.

2. Formal and mechanized: Models are expressed and
explored using a mechanized mathematics system like a
theorem proving system or computer algebra system.

» A major portion of the work is done by machine.

In most applications, the mathematical verification will be a
mixture of these two approaches.

13



Final Comments

@ Verification and analysis should be done at all stages in
the development of a software product—the earlier the
better.

@ Inspection, testing, and mathematical verification
complement each other.

» Inspection is good for finding things that are missing in
the software product and in its documentation.

» Testing is good for finding low-level errors, especially
coding errors.

» Mathematical verification is good for finding high-level
errors, especially design errors.

@ The same documentation should be used for inspection,
testing, and mathematical verification

14



