
SE 2AA4 Winter 2007

06 Java Notes

William M. Farmer

Department of Computing and Software
McMaster University

28 February 2007



Note 1: Classes vs. Their Types

Each expression has a unique type, and each object
belongs to a unique class.

An object O is an instance of a class C if C is O’s class
or C is a superclass of O’s class.

I Every object is an instance of the class Object since
Object is a superclass of every other class.

An object O is of a class type C if O is an instance of the
class C .

Type is a compile-time notion, while class is a run-time
notion.

The following cannot be deduced at compile-time since
the class of an object may not be known until run-time:

I Which method to invoke.
I The outcome of a call to instanceof.
I Correctness of a casting (explicit type conversion).

2



Note 2: Interfaces

A Java interface consists of a set of public constant and
method declarations.

I The interface name becomes a new reference type.
I An interface has no implementation at all.
I An interface cannot be instantiated.

Interfaces are good for recording similarities between
unrelated classes.

Interfaces cannot be extended (unlike classes).

An object O is of an interface type I if O’s class
implements the interface I .

Key benefit of interfaces: If I is an interface, then a
variable of type I may be bound to any object whose class
implements I .

3



Note 3: Constants

A constant should be specified as an immutable,
initialized class or interface field, e.g., as:

final static int ZERO = 0;

A global constant should be specified a public,
immutable, initialized class or interface field, e.g., as:

public final static int ZERO = 0;

The name of a constant should be written in uppercase,
e.g., as:

I ZERO.
I ZERO VECTOR.

Interfaces are very convenient for managing groups of
global constants.

4


