
And now for something And now for something 

completely differentcompletely different

MORE JAVAMORE JAVA



The keyword The keyword thisthis

�� This is the keyword referring to the This is the keyword referring to the 

very class its invery class its in
�� Public class Num{Public class Num{

private private intint x;x;

public public Num(intNum(int x){xx){x =x}=x}

}}

�� But which x is which?? But which x is which?? 
�� public public Num(intNum(int x){this.xx){this.x =x}=x}

�� Both the reader and the computer Both the reader and the computer 

know for sure which x is whichknow for sure which x is which



thisthis continuedcontinued

�� This can also be used as a This can also be used as a 
constructorconstructor

�� public class Rectangle { public class Rectangle { 

private private intint x, y, width, height; x, y, width, height; 

public Rectangle() { public Rectangle() { this(0, 0, 0, 0);this(0, 0, 0, 0); } } 

public public Rectangle(intRectangle(int width, width, intint height) { height) { 

this(0, 0, width, height);this(0, 0, width, height); } } 

public public Rectangle(intRectangle(int x, x, intint y, y, 

intint width, width, intint height) { height) { 

this.xthis.x = x; = x; 

this.ythis.y = y; = y; 

this.widththis.width = width; = width; 

this.heightthis.height = height; } = height; } 

... } ... } 



InheritanceInheritance

�� OO inheritance is supposed to be like OO inheritance is supposed to be like 

real life inheritance. We get real life inheritance. We get 

attributes, and attributes, and behavioursbehaviours from our from our 

parents and so do Java Classesparents and so do Java Classes

�� We do this by using the keyword We do this by using the keyword 

““extendsextends””..

�� Only classes inherit, not packages, Only classes inherit, not packages, 

fields or methodsfields or methods



Inheritance exampleInheritance example

�� Public class Bicycle{Public class Bicycle{

private private intint cadence;cadence;

private private intint gear;gear;

private private intint speed;speed;

……

public public getSpeed(){returngetSpeed(){return speed;}speed;}

……

}}

�� Public class Public class MountainBikeMountainBike extends Bicycle{extends Bicycle{

}}

�� MountainBikeMountainBike will have all the same will have all the same 

fields and methods of Bicycle. You fields and methods of Bicycle. You 

can also add morecan also add more



More on InheritanceMore on Inheritance

�� Both logically and in our code, a Both logically and in our code, a 
Bicycle can be a Bicycle can be a MountainBikeMountainBike, but a , but a 
MountainBikeMountainBike is not just any Bicycleis not just any Bicycle

�� ……

BicycyleBicycyle myBikemyBike = new = new MountainBikeMountainBike();();

……

�� Both logically and in our code, a Both logically and in our code, a 
Bicycle can be a Bicycle can be a MountainBikeMountainBike, but a , but a 
MountainBikeMountainBike

�� This is dynamic typing since we donThis is dynamic typing since we don’’t t 
truly know the type until runtime.truly know the type until runtime.



The keyword The keyword supersuper

�� Super works just like this, only Super works just like this, only 

instead of referring to the current instead of referring to the current 

class, it refers to the parent classclass, it refers to the parent class

�� Super can refer to fields, methods or Super can refer to fields, methods or 

the constructor so long as the the constructor so long as the 

interface chosen allows it.interface chosen allows it.



Back to InterfacesBack to Interfaces

�� There are really 4 main levels of There are really 4 main levels of 

protection, last time I mentioned 2; public protection, last time I mentioned 2; public 

and private.and private.

�� There is also protected There is also protected –– means that it is means that it is 

visible to the package and to all visible to the package and to all 

subclasses.subclasses.

�� Also you get a different interface when you Also you get a different interface when you 

type nothing type nothing –– means that it is visible to means that it is visible to 

the packagethe package



Interface ReviewInterface Review

NNNNNNYYprivateprivate

NNNNYYYYnothingnothing

NNYYYYYYprotectprotect

eded

YYYYYYYYPublicPublic

WorldWorldSubclasSubclas

ss
PackagPackag

ee
ClassClassModifierModifier



Method overriding Method overriding vsvs overloadingoverloading

�� We override methods when we declare We override methods when we declare 

methods with the same argument list and methods with the same argument list and 

name as one in the class (usually name as one in the class (usually 

inherited)inherited)

�� We overload a method when we declare it We overload a method when we declare it 

to have a different argument list and the to have a different argument list and the 

same namesame name

�� We cannot have a method with the same We cannot have a method with the same 

argument list and a different return typeargument list and a different return type



The object classThe object class

�� Implicitly, every class in Java Implicitly, every class in Java 
extends the Object class which extends the Object class which 
contains the following contains the following usefullusefull
methods (and more)methods (and more)

�� public public booleanboolean equals(Objectequals(Object objobj))
Indicates whether some other Indicates whether some other 

object is "equal to" this one. object is "equal to" this one. 

�� public String public String toStringtoString()()
Returns a string representation Returns a string representation 

of the object. You should override of the object. You should override 
this method to make it useful.this method to make it useful.



The keyword The keyword finalfinal

�� The final keyword will do the The final keyword will do the 

followingfollowing

•• It will make fields constantIt will make fields constant

•• It will make it so methods cannot be It will make it so methods cannot be 

overridden in subclasses. (Good idea for overridden in subclasses. (Good idea for 

things called within constructors)things called within constructors)

•• It will make it so classes cannot be It will make it so classes cannot be 

subclassedsubclassed (The string class is final)(The string class is final)



The keyword The keyword abstractabstract

�� Abstract classes are classes that Abstract classes are classes that 

cannot be instantiated, only cannot be instantiated, only 

subclassed.subclassed.

�� They can have fields, methods just They can have fields, methods just 

like any class, but no actual objects.like any class, but no actual objects.

�� We can also have abstract methods, We can also have abstract methods, 

these have a signature but no these have a signature but no 

interfaceinterface


