And now for something
completely different

MORE JAVA




The keyword this

= [his is the keyword referring to the
very class its in

m Public class Num{
private int x;
public Num(int x){x =x}

}
s But which x is which??

m public Num(int x) {this.x =x}

= Both the reader and the computer
know for sure which x is which




this continued

s | his can also be used as a
constructor

m public class Rectangle {
private int x, y, width, height;
public Rectangle() { this(0, 0, 0, 0),; 1}
public Rectangle (int width, int height) {
this (0, 0, width, height),; }
public Rectangle(int x, 1nt vy,
int width, int height) {
this.x = x;
this.y = vy;
this.width = width;
this.height = height; }




Inheritance

= OO inheritance is supposed to be like
real life inheritance. We get
attributes, and behaviours from our
parents and so do Java Classes

s We do this by using the keyword
“extends”.

= Only classes inherit, not packages,
fields or methods




Inheritance example

m Public class Bicycle{
private int cadence;

private int gear;
private int speed;

public getSpeed() {return speed; }

}

m Public class MountainBike extends Bicycle{

}

s MountainBike will have all the same
fields and methods of Bicycle. You
can also add more




More on Inheritance

s Both logically and in our code, a
Bicycle can be a MountainBike, but a
MountainBike is not just any Blcycle

B icycyle myBike = new MountainBike () ;

m Both logically and in our code, a
Bicycle can be a MountainBike, but a
MountainBike

= This is dynamic typing since we don't
truly know the type until runtime.




The keyword super

s Super works just like this, only
instead of referring to the current
class, it refers to the parent class

= Super can refer to fields, methods or
the constructor so long as the
interface chosen allows it.




Back to Interfaces

= [here are really 4 main levels of
protection, last time I mentioned 2; public
and private.

= [here is also protected — means that it is
visible to the package and to all
subclasses.

s Also you get a different interface when you
type nothing — means that it is visible to
the package




Interface Review

Modifier

Class

Packag
e

Subclas
S

Public

Y

Y

Y

protect
ed

Y

Y

Y

nothing

private




Method overriding vs overloading

s We override methods when we declare
methods with the same argument list and
name as one in the class (usually
inherited)

= We overload a method when we declare it
to have a different argument list and the
same name

s We cannot have a method with the same
argument list and a different return type




T'he object class

s Implicitly, every class in Java
extends the Ob{'ect class which
contains the following usefull
methods (and more)

= public boolean equals(Object obj)
Indicates whether some other
object is "equal to" this one.

s public String toString()
Returns a string representation
of the object. You should override
this method to make it useful.




The keyword 7inal

= [he final keyword will do the
following
o It will make fields constant

o [t will make it so methods cannot be
overridden in subclasses. (Good idea for
things called within constructors)

o It will make it so classes cannot be
subclassed (The string class is final)




The keyword abstract

s Abstract classes are classes that
cannot be instantiated, only
subclassed.

= [hey can have fields, methods just
like any class, but no actual objects.

s \We can also have abstract methods,
these have a signature but no
interface




