
Moving from C to 

Java



The Java Syntax We Know



Java Types

� Some of the types we know and love are 
still there

� Integer: byte, short, char, int, long

�Floating Point: float, double

� And we even get a boolean type



Java Types

� There are no pointers in Java, but they aren’t 

necessary for referential types.

� All primitive types, i.e. the ones we know about 

are pass by value.

� All classes, wrappers, interfaces and arrays are 

actually references

� (Will go back to classes and arrays, leaver 

wrappers and interfaces for later)



The basics

� Everything in life has 3 important parts (not to 

say the other parts aren’t)

� A state; The things that define this object from a 

similar one

� An interface to the state; The ways we can interact 

with the state of this object

� Interfaces can be both public and private

� A set of Behaviours; The things this object can do

� Java classes have all of these things too



The Skeleton Java Class

� Below is a basic Java Class
Public class Name
{

/* State Goes Here*/

public Name(arguments){} //The constructor

/*Methods go here*/

public static void main(String [] args){}
}

� All Java classes must have a constructor

� They do not all have to have a main, only your 
main (Duhh!!!)



State in Java

� The state of a class in Java are the 
variables global to the class. Why??

� This is because a class encapsulates an 
object, meaning it contains everything that 
is an object.

� State can of course be variables of any 
type



Variables of Class Type

� All class variables are referential types 
(think pointers)

� They all have a state, behaviours and a 
public interface detailing them.

� A giant library of classes in Java can be 
found in the API (bookmark this) 
http://java.sun.com/j2se/1.5.0/docs/api/



Java Arrays

� Earlier I said Arrays are referential types, what 

does this mean??

� In Java when we say int numbers [] this is similar 

to int *numbers. We create a reference/pointer to a 

piece in memory but there is nothing there.

� Classes work the same way; String name is similar 

to char *name, it is only pointing to memory.



Instantiating And “new”

� Both classes and arrays must be instantiated to be used.

� We do this with the command new, which calls the 
constructor for us

� String name = new String (“Jeff”)

� In Java we have method overloading, which means we 
can have many functions with the same name but 
different arguments, like constructors

� char letters [] = {'a','j','e','f','f','z'};

� String name = new String(letters,1,4);



Interface in Java

� When we say public java class, we are defining 

interface.

� Here are two main types of interfacing Java 

allows (more will be explained later)

� Private; This means it is visible only within the class. 
State is usually private.

� Public; This means that when you see the class you 
see this too. Constructors are public.



Behaviours in Java

� All the methods of a class are its 
behaviours.

� In C a function in only a behaviour 
because we define it to be, in Java a 
function is only not a behaviour when we 
define it that way.

� Because methods are native to the class 
they can access all class objects



Methods Example

� public class IntHolder
{

private int myNum;

public IntHolder(int i) {myNum=i;} 

//Below is a very basic selector
public int getNum()

{

return myNum;

}

}

� Then when we want to use this method we simply go
IntHolder temp = new Intholder(5);
temp.getNum()



Back To The Basics

� Everything in life has 3 important parts (not to 

say the other parts aren’t)

� A state; The things that define this object from a 

similar one

� An interface to the state; The ways we can interact 

with the state of this object

� Interfaces can be both public and private

� A set of Behaviours; The things this object can do

� Java classes have all of these things too



The SE view on life

� Lets take the example of a Cat
� State = things like colour, breed, state of hunger, 

cleanliness, etc

� Public interface = We can see the colour, we can feed 
the cat, we can pet the cadet.

� Private interface = Only the cat can interface with its 
thoughts, you or I cannot (We don’t even really 
KNOW the cat has thoughts)

� A set of behaviours = The cat can eat, sleep, preen, 
terrorize mice, etc



Cat in C

� To define the state we create the type
Typedef struct

{

char* name;

char* breed;

int hunger;

}Cat;

� The public interface is the contents of the header file

� The private interface would be any internal functions

� To define the behaviour we create other functions
void eat(Cat *chat, int foodAmount)

{

chat->hunger = (chat->hunger-foodAmount)<0?0:(chat->hunger-

foodAmount);

}



Cat in Java

� public class Cat
{//The state

private String name;
private String breed;
private int hunger;

public Cat(){} // This is a basic constructor

//This behaviour
public void eat(int foodAmount)
{

hunger = (hunger-foodAmount)<0?0:(hunger-
foodAmount);

}
}



Classes, Modules &SE Design (Oh My)

� The most obvious of the qualities is of 
course modularity

� Abstraction; By viewing computer objects 
like real life object we can achieve a 
higher level of abstraction

� Information Hiding; Through public and 
private interfaces.


