Introduction to Java

Clare So

socm@mcmaster.ca

SE2AA4 Tutorial. McMaster University. January 24, 2007

Some Features of Java

- Object-oriented programming
- Exception handling
- The program may not crash because of a run-time error
- Automatic garbage collection
- No need to free() the memory manually
- Platform independence
- Programs are compiled into bytecode
- Bytecode is executed by the Java virtual machine

What is Java?

- An object-oriented programming language
- Developed at Sun Microsystems
- Project started by James Gosling in 1991
- First released in January 1996
- "Write once, run everywhere"
- http://java.sun.com

A First Java Program

- Let's examine Hello. java

```
public class Hello {
    public static void main(String[] args) {
        System.out.println("Hi mom! I can program in Java.");
    }
}
```

- Steps to compile and run Hello. java
[socm@birkhoff ~]\$ javac Hello.java
[socm@birkhoff ~]\$ java Hello
Hi mom! I can program in Java.
[socm@birkhoff ~]\$

A First Java Program

- The . java file must match the name of the class (ie. Hello.java must only include the Hello class)
- public static void main indicates the main function/procedure
- System. out is a built-in object in Java for handling outputs
- println is a built-in function/procedure of the System. out object

Our Circle Class (circle.java)

```
public class Circle {
    private double diameter; // The diameter of the circle
    // Default Constructor
    public Circle() {
        diameter = 10.0;
}
    // Constructor
    public Circle(double r) {
        diameter = r;
}
```


Creating Classes (Modules)

- Let's create a representation of a circle
- A circle only has its diameter as its attribute
- We can
- Initialize the circle (constructor)
- Grow/Shrink the circle (mutator)
- Get the diameter (selector)
- Additionally, we can
- Calculate the circumference of the circle
- Create a string representation of the object

Our Circle Class (circle.java)

```
// Grow the circle by "factor" units.
// The new diameter of the circle is returned.
public double grow(double factor) {
    diameter = diameter + factor;
    return diameter;
}
// Shrink the circle by "factor" units.
// The new diameter of the circle is returned.
public double shrink(double factor) {
    diameter = diameter - factor;
    return diameter;
}
```

```
Our Circle Class (circle.java)
// Access the diameter of the circle
// without modifying it
public double getDiameter() {
    return diameter;
}
// Calculate the circumference of the circle
public double calculatetCircumference() {
    double PI = 3.14;
    return diameter*PI;
}
// Tell us how big the cirlce is!
public String toString() {
    return "The diameter of this circle is " + diameter + " cm.";
}
```


Using our Circle Class (Test.java)

- Here is how we test our newly created Circle class

```
public class Test {
    public static void main(String[] args) {
```

 Circle a = new Circle();
 System.out.println(a.toString());
 System.out.println("getDiameter gives us "+a.getDiameter);
 a.grow(2.4);
System.out.println("After grow: "+a.toString());

Using our Circle Class (Test. java)

- Compiling and running Test.java

```
[socm@birkhoff ~]$ javac Test.java
[socm@birkhoff ~]$ java Test
The diameter of this circle is 10.0 cm.
getDiameter gives us 10.0
After grow: The diameter of this circle is 12.4 cm.
After shrink: The diameter of this circle is 7.4 cm.
The circumference of this circle is 23.236cm.
[socm@birkhoff ~]$
```

