
What do I need to Know For My
Assignment?

C Pointer Review

� To declare a pointer, we use the * operator.

This is similar to but different from using * not

in declaration.

� int* ptr;

� This declares a variable that points to an

integer

C Pointer Review

� The & or “address of” operator gives us a

pointer to the variable.

� Int i;

� The type of &i is *int

C Pointer Review

� The * or “dereferencing” operator, will return

the variable that a pointer is pointing to

� Int* i

� *i is of type int

� Remember for structures that (*struct).value

== struct->value

C Pointer Review

� A char* can point to a string of any length,

because really we are storing the value of

the address of the first character.

� In C a string is a set of characters until the

termination character ‘/0’

� Arrays are also pointers, only their length is

pre-defined

C Pointer Review

� Given double b[5];double *bPtr; bPtr = b;

� bPtr = &b[0]

� bPtr + 1 ==

� *(bPtr + 3) ==

� bPtr[2] ==

C Pointer Review

� Void* ptr;

� This is a void pointer, meaning it can point to

anything.

� We can use this to fake polymorphism, i.e.

making a linked list using void pointers

means we can actually store anything we

want in the list

C Pointer Review

� When a pointer points to nothing it is said to

have NULL value

� NEVER DEREFERENCE NULL VALUES

� We can check to see if a pointer is null easily

� Int * i;

if (i==NULL)

printf(“Obviously True”);

C Pointer Review

� With the exception of arrays and functions, C

is always pass by value. This means that the

value of your parameter is passed into the

function. Therefore changing the value in

your function will have no effect

� This is why we must use pass by reference

for many functions.

C Pointer Review

� Void foo1(int i) { i = 0; }

� Void foo2(int *i){*i=0;}

� Int main(void) {

int k = 10; foo?(k);

printf(“k = %d”,k);

return 0;

}

Data Structures

� Data Structures are, as the name implies, a

structure to hold data.

� They all have 3 basic components;

constructors, selectors and mutators

Constructors

� Constructors are the part of the structure

used to “construct” a variable.

Selectors

� Selectors are procedures that selects and

returns the stored data

Mutators

� Mutators are procedures that will mutate the

data into an easier more useful form

Our Tools in C

� Typedef lets you rename a type to something

else

� Typedef <existingType> <newTypeName>

� Typedef int age;

Our Tools in C

� Enum is a tag that lets us define

enumerations

� Enum {Mon, Tue, Wed, Thu, Fri, Sat, Sun};

� !!!!!This does not let you use the type!!!!!

� To use the type, we must typedef

� Typedef Enum {Mon, Tue, Wed, Thu, Fri,

Sat, Sun} Day;

Our Tools in C

� Enum looks much like a typedef, because it

essentially gives new names for numbers

� It really looks like

Enum {Mon = 0, Tue = 1, Wed = 2, Thu = 3,

Fri = 4, Sat = 5, Sun = 6};

� We can, should we choose, define a type

Typedef enum {apple = 5, pear = 7} Fruit;

Our Tools in C

� Struct lets us build more complicated types,

much like records

� Typedef struct

{ int studentNo

char* name

} Student;

� Once again the above is shorthand

Our Tools in C

� Structs can have other structures, arrays and

pointers

� Putting a pointer to the same structure allows

recursive data types like lists, trees, etc.

Our Tools in C

� To make memory space for our types it is

often necessary to use the function malloc, to

allocate memory.

� Int *i; automatically sets enough space for an

integer, but should we want a pointer to

complicated data structures we need malloc

� Malloc takes the number of bytes and returns

a pointer to enough space

Our Tools in C

� Sizeof is an operator that returns the size of
anything, like the number of bytes necessary
for a malloc

� Char c; (sizeof c) == 8

� For arrays remember to find the size of the
whole array

� Int i [length]];
(sizeof i) * length

Date Example

� Lets now create a data type in C for the Date

� We will store, month, day of the month and

day of the week

Date Example

� We will do this by creating two enumerations
for Month and Day

� typedef enum { JAN, FEB, MAR, APR, MAY,
JUN, JUL, AUG, SEP, OCT, NOV, DEC }
Month;

� typedef enum { MON, TUE, WED, THU, FRI,
SAT, SUN } Day;

Date Example

� Now we combine them into the data structure

� Typedef struct { Month month, Day day, int

dayNum} Date;

Date Example

� Now we add a constructor

� Date* newDate(Month mo, Day da, int i){
Date *d = malloc(sizeof(Date));
if (d = null)

fprintf(stderr, “Failure Making New Date”);
else {d->month = mo; d->day = da;

d->dayNum = I;}
return d;
}

Date Example

� Now we add selectors

� Month getMonth(Date *d)

{ return d->month;}

� Day getDay(Date *d)

{return d->day;}

Date Example

� Now we add a mutator

� Date* tommorow(Date *d){

return newDate(

(d->month + ((d->dayNum+1) % 30))% 11,

(d->day + 1)%6,

(d->dayNum+1)%30);

}

