

SE 2F03 Fall 2005

Assignment 4 Solutions

Instructor: William M. Farmer

Revised: 14 December 2005

(1) [30 pts.] Using lambda-notation, definite description, if (an if-then-else term constructor), and types, write expressions that denote the following functions and predicates:

(a) The identity function on \mathbf{R} , the real numbers.

Answer: $\lambda x : \mathbf{R} . x$.

(b) The empty function on \mathbf{Q} , the rational numbers.

Answer: $\lambda x : \mathbf{Q} . 1/0$ or $\lambda x : \mathbf{Q} . \perp_{\mathbf{Q}}$

(c) The curried form of $+ : \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$.

Answer: $\lambda x : \mathbf{R} . \lambda y : \mathbf{R} . x + y$.

(d) The predicate that maps the rational numbers to \mathbf{T} (true) and the irrational numbers to \mathbf{F} (false).

Answer: $\lambda x : \mathbf{R} . \text{if}(\text{rational}(x), \mathbf{T}, \mathbf{F})$ or $\lambda x : \mathbf{R} . \text{rational}(x)$.

(e) The function that maps each rational number q to the largest integer i such that $i \leq q$ (i.e., to the “floor” of q).

Answer: $\lambda q : \mathbf{Q} . \lambda i : \mathbf{Z} . i \leq q \wedge \neg \exists j : \mathbf{Z} . i < j \wedge j \leq q$.

(f) The restriction of the multiplication function $* : \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z}$ to nonnegative integers.

Answer: $\lambda x, y : \mathbf{Z} . \text{if}(0 \leq x \wedge 0 \leq y, x * y, \perp_{\mathbf{Z}})$.

(g) The function that maps each real number to its cubic root.

Answer: $\lambda x : \mathbf{R} . \lambda y : \mathbf{R} . y * y * y = x$.

(h) The predicate that, given a set of real numbers represented as a predicate $p : \mathbf{R} \rightarrow *$, returns as input \mathbf{T} if the set is nonempty and \mathbf{F} otherwise.

Answer: $\lambda p : (\mathbf{R} \rightarrow *) . \exists x : \mathbf{R} . p(x)$.

(i) The function that, given two functions $f, g : \mathbf{Z} \rightarrow \mathbf{Z}$ as input, returns as output the function that maps each integer x to $f(x) + g(x)$.

Answer: $\lambda f, g : (\mathbf{Z} \rightarrow \mathbf{Z}) . \lambda x : \mathbf{Z} . f(x) + g(x)$.

(j) The function that, given two functions $f, g : \mathbf{Q} \rightarrow \mathbf{Q}$ as input, returns as output the composition of f and g .

Answer: $\lambda f, g : (\mathbf{Q} \rightarrow \mathbf{Q}) . \lambda x : \mathbf{Q} . f(g(x))$.

(2) [10 pts.] Reduce the following functions applications using only beta-reduction:

(a) $(\lambda y : \mathbf{R} . (\lambda x . f(x))(y))$.

Answer: $\lambda x . f(x)$.

(b) $(\lambda x : \mathbf{Z} . (\lambda x . x^2)(2) + x)(7)$.

Answer: $2^2 + 7$.

(c) $(\lambda u : \mathbf{Q} . \text{if}(u = 0, u, -u))(g(f(17) + f(g(2, 31))))$

Answer: $\text{if}(g(f(17) + f(g(2, 31)))) = 0$,

$g(f(17) + f(g(2, 31)))$,

$-g(f(17) + f(g(2, 31)))$.

(d) $(\lambda f : (\mathbf{R} \rightarrow (\mathbf{R} \rightarrow \mathbf{R})) . (\lambda x : \mathbf{R} . (\lambda y : \mathbf{R} . f(x)(y))))(+)(2)(3)$.

Answer: $+(2)(3)$.

(e) $(\lambda f : (\mathbf{R} \rightarrow (\mathbf{R} \rightarrow \mathbf{R})) . f(f(2)))(\lambda x : \mathbf{R} . x^x)$.

Answer: $(2^2)^{(2^2)}$.

(3) [10 pts.] Which of the following expressions are undefined? Explain your answer in each case.

(a) $(\lambda x : \mathbf{R} . \sqrt{x})$.

Answer: Defined because it denotes the square root function.

(b) $(\lambda x : \mathbf{R} . \sqrt{x})(-5)$.

Answer: Undefined because $\sqrt{-5}$ is undefined.

(c) $(\iota z : \mathbf{R} . 0 = 0 * z)$.

Answer: Undefined because every real number satisfies the body of the definite description.

(d) $(\epsilon z : \mathbf{R} . 0 = 0 * z)$.

Answer: Defined because every, and hence at least one, real number satisfies the body of the indefinite description.

(e) $1/0 = 1/0$.

Answer: Defined because formulas are always defined. This formula would be true in a logic in which all expressions are defined, but would probably be false in a logic in which expressions may be undefined.

(4) [10 pts.] What is the type of each of the following expressions of STT?

(a) $(\lambda x : \iota . \lambda y : \iota . f(x)(y))$.

Answer: $(\iota \rightarrow (\iota \rightarrow \iota))$ assuming the type of f is $(\iota \rightarrow (\iota \rightarrow \iota))$.

(b) $(\lambda x : \iota . \lambda f : (\iota \rightarrow \iota) . f(x))$.

Answer: $(\iota \rightarrow ((\iota \rightarrow \iota) \rightarrow \iota))$.

(c) $(\lambda x : \iota . \lambda f : (\iota \rightarrow \iota) . f(x) = a)$.

Answer: $(\iota \rightarrow ((\iota \rightarrow \iota) \rightarrow *))$.

(d) $(\lambda x : \iota . x = x)(b)$.

Answer: $*$.

(e) $(\text{I} z : \iota . z \neq z)$.

Answer: ι .

(5) [30 pts.] Translate the following statements into STT:

(a) A unary function f of type $(\iota \rightarrow \iota)$ is injective.

Answer: $\forall x, y : \iota . f(x) = f(y) \Rightarrow x = y$.

(b) A binary predicate p of type $(\iota \rightarrow (\iota \rightarrow *))$ is a transitive relation.

Answer: $\forall x, y, z : \iota . (p(x)(y) \wedge p(y)(z)) \Rightarrow p(x)(z)$.

(c) A unary predicate s of type $(\iota \rightarrow *)$ represents a singleton set.

Answer: $\exists x : \iota . (s(x) \wedge (\forall y : \iota . s(y) \Rightarrow y = x))$.

(d) There exists a function f from individual to individuals such that, for every individual x , $f(f(x)) = x$.

Answer: $\exists f : (\iota \rightarrow \iota) . \forall x : \iota . f(f(x)) = x$.

(e) Two functions from individuals to individuals are equal iff they map the individuals in exactly the same way.

Answer: $\forall f, g : (\iota \rightarrow \iota) . f = g \Leftrightarrow \forall x : \iota . f(x) = g(x)$.

(f) Two sets of individuals are equal iff they have exactly the same members. (Represent the sets as unary predicates.)

Answer: $\forall s, t : (\iota \rightarrow *) . s = t \Leftrightarrow \forall x : \iota . s(x) \Leftrightarrow t(x)$.

(g) Two individuals are equal iff they satisfy exactly the same set of properties.

Answer: $\forall a, b : \iota . a = b \Leftrightarrow \forall p : (\iota \rightarrow *) . p(a) \Leftrightarrow p(b)$.

(h) There exists a unique individual that satisfies a unary predicate q .

Answer: $\exists x : \iota . (q(x) \wedge (\forall y : \iota . q(y) \Rightarrow y = x))$.

(i) The unique individual that satisfies a unary predicate q equals the individual represented by the constant a .

Answer: $(\exists x : \iota . q(x)) = a$.

(j) For every function f of type $(\iota \rightarrow \iota)$, there exists a predicate p of type $(\iota \rightarrow (\iota \rightarrow *))$ such that p is the graph of f .

Answer: $\forall f : (\iota \rightarrow \iota) . \exists p : (\iota \rightarrow (\iota \rightarrow *)) . \forall x, y : \iota . p(x)(y) \Leftrightarrow f(x) = y$.

(6) [5 pts.] Let $L = (\{f\}, \tau)$, where $\tau(f) = (\iota \rightarrow \iota)$, be a language of STT. Find a set Γ of sentences of L such that M is a model of $T = (L, \Gamma)$ iff the interpretation of f in M is a bijection, i.e., a total function that is injective (one-to-one) and surjective (onto).

Answer: Γ is the set of the following sentences of L :

- $\forall x, y : \iota . f(x) = f(y) \Rightarrow x = y$ (injectivity).
- $\forall y : \iota . \exists x : \iota . f(x) = y$ (surjectivity).

(7) [5 pts.] Find a language L of STT and a set Γ of sentences of L such that M is a model of $T = (L, \Gamma)$ iff M is a Boolean algebra.

Answer: Let $L = (\{0, 1, \neg, +, \cdot\}, \tau)$ be the language of STT such that:

- $\tau(0) = \tau(1) = \iota$.
- $\tau(\neg) = (\iota \rightarrow \iota)$.
- $\tau(+) = \tau(\cdot) = (\iota \rightarrow (\iota \rightarrow \iota))$.

and let Γ be the set of the following sentences of L :

- $\forall x, y, z : \iota . +(+x)(y)(z) = +x(+y)(z)$.
- $\forall x, y, z : \iota . \cdot(x)(y)(z) = \cdot x(\cdot y)(z)$.
- $\forall x, y : \iota . +x(y) = +y(x)$.
- $\forall x, y : \iota . + \cdot x(y) = \cdot y(x)$.
- $\forall x, y, z : \iota . +x(\cdot y)(z) = \cdot(+x)(y)(+x)(z)$.
- $\forall x, y, z : \iota . \cdot x(+y)(z) = +(\cdot x)(y)(\cdot x)(z)$.
- $\forall x : \iota . +x(0) = x$.
- $\forall x : \iota . \cdot x(1) = x$.
- $\forall x : \iota . +x(\bar{x}) = 1$.

- $\forall x : \iota . \cdot(x)(\bar{x}) = 0.$

Notice that we have written the axioms using entirely prefix notation; the axioms would be more readable if infix notation were used for $+$ and \cdot instead.

$T = (L, \Gamma)$ is an STT theory of Boolean algebras.