

SE 2F03 Fall 2005

Final Examination Answer Key

Instructor: William M. Farmer

(1) [2 pts.] The IMPS logic is a version of first-order logic. Is this statement true or false?

A.) True.
B.) False.

(2) [2 pts.] The formula $\neg p$ is logically equivalent to $p \mid p$. Is this statement true or false?

A.) True.
B.) False.

(3) [2 pts.] In STT, the type ι represents the type of individuals. Is this statement true or false?

A.) True.
B.) False.

(4) [2 pts.] Every valid formula is satisfiable. Is this statement true or false?

A.) True.
B.) False.

(5) [2 pts.] Everything that can be formalized in propositional logic can be also formalized in first-order logic. Is this statement true or false?

A.) True.
B.) False.

(6) [2 pts.] A proof system is useless if it is not both sound and complete. Is this statement true or false?

A.) True.
B.) False.

(7) [2 pts.] $T \models A$ is false if T has no models. Is this statement true or false?

A.) True.
 B.) False.

(8) [2 pts.] Simple type theory is a kind of higher-order logic? Is this statement true or false?

A.) True.
 B.) False.

(9) [2 pts.] Who is generally considered the greatest logician of all time?

A.) Aristotle.
 B.) Goethe.
 C.) Gödel.
 D.) Boole.

(10) [2 pts.] Which of the following definite descriptions is improper?

A.) $\exists x : \mathbf{R} . x = 2$.
 B.) $\exists x : \mathbf{R} . x = \sqrt{2}$.
 C.) $\exists x : \mathbf{R} . x + x = x * x$.
 D.) $\exists x : \mathbf{R} . 1 + x + x = x * x$.

(11) [2 pts.] Let $L = (\{0\}, \{+\}, \{=\})$ be a language of FOL where $+$ is binary, and suppose $T = (L, \Gamma)$ is a theory of monoids. Which of the following formulas is not a logical consequence of T ?

A.) $\forall x, y, z . ((x + y) + z) = (x + (y + z))$.
 B.) $\forall x, y . (x + y) = (y + x)$.
 C.) $\forall x . x + 0 = x$.
 D.) $0 = 0 + 0$.

(12) [2 pts.] It is possible to write a computer program that can decide the validity of any formula of

A.) PROP.
 B.) FOL.
 C.) STT.
 D.) All of the above.

(13) [2 pts.] The dual of \Rightarrow (implication) is

- A.) \vee .
- B.) \wedge .
- C.) \Leftrightarrow .
- D.) None of the above.

(14) [2 pts.] $(\lambda x : \mathbf{Z} . (\lambda x : \mathbf{Z} . f(x)))(x + 1)$ beta-reduces to

- A.) $\lambda x : \mathbf{Z} . (\lambda x : \mathbf{Z} . f(x))$.
- B.) $\lambda x : \mathbf{Z} . f(x)$.
- C.) $\lambda x : \mathbf{Z} . f(x + 1)$.
- D.) $f(x + 1)$.

(15) [2 pts.] What is the value of the expression

$$\mathbf{I} f : \mathbf{N} \rightarrow \mathbf{N} . \forall x : \mathbf{N} . f(x) = \text{if}(x = 0, 1, x * f(x - 1))?$$

- A.) True.
- B.) $f(x)$.
- C.) $x!$.
- D.) The factorial function.

(16) [2 pts.] Which of the following LTL formulas is always true?

- A.) $\varphi \mathbf{U} \psi \rightarrow \mathbf{F} \varphi$.
- B.) $\psi \mathbf{U} \varphi \rightarrow \mathbf{F} \varphi$.
- C.) $\varphi \mathbf{W} \psi \rightarrow \mathbf{F} \varphi$.
- D.) $\psi \mathbf{W} \varphi \rightarrow \mathbf{F} \varphi$.

(17) [2 pts.] Suppose \oplus is the curried form of the addition function $+$: $\mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$. Then $\oplus(2)$ equals

- A.) $\lambda x : \mathbf{R} . 2 + x$.
- B.) $\forall x : \mathbf{R} . 2 + x$.
- C.) $\mathbf{I} x : \mathbf{R} . 2 + x$.
- D.) $2 + 2$.

(18) [2 pts.] Which of the following natural deduction rules discharges assumptions?

- A.) \vee elimination.
- B.) $\exists x$ elimination.
- C.) \rightarrow introduction.
- D.) All of the above.

(19) [2 pts.] Modus ponens is the same rule as

- A.) \rightarrow introduction.
- B.) \rightarrow elimination.
- C.) Proof by contradiction.
- D.) The law of excluded middle.

(20) [2 pts.] Let $L = (\{0\}, \{+\}, \{=\})$ be a language of FOL where $+$ is binary. Which of the following is a statement in the metalanguage of L ?

- A.) $\forall x, y . x + y = y + x$.
- B.) $0 = 0$.
- C.) $x + 0 = x$.
- D.) $\models \forall x . x + 0 = x$.

(21) [5 pts.] Give an example of a domain D and a binary predicate p on D such that

$$\forall x \in D . \exists y \in D . p(x, y)$$

is true, but

$$\exists y \in D . \forall x \in D . p(x, y)$$

is false.

Answer: Let D be the set of all human beings, and let $p : D \times D$ be the predicate such $p(x, y)$ holds iff x is a child of y .

(22) Let A be the formula

$$(p \wedge (q \rightarrow \neg r)) \rightarrow (r \rightarrow (\neg p \vee q))$$

of propositional logic.

A.) [5 pts.] Compute the truth table of A .

Answer:

p	q	r	$(p \wedge (q \rightarrow \neg r)) \rightarrow (r \rightarrow (\neg p \vee q))$							
T	T	T	F	F	F	T	T	F	T	T
T	T	F	T	T	T	T	T	F	T	T
T	F	T	T	T	F	F	F	F	F	F
T	F	F	T	T	T	T	T	F	F	T
F	T	T	F	F	F	T	T	T	T	T
F	T	F	F	T	T	T	T	T	T	T
F	F	T	F	T	F	T	T	T	T	T
F	F	F	F	T	T	T	T	T	T	T

B.) [5 pts.] Construct a formula C of propositional logic in conjunctive normal form such that A and C are logically equivalent.

Answer: $\neg p \vee q \vee \neg r$.

C.) [5 pts.] Construct a formula D of propositional logic in disjunctive normal form such that A and D are logically equivalent.

Answer: $(p \wedge q \wedge r) \vee (p \wedge q \wedge \neg r) \vee (p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge q \wedge r) \vee (\neg p \wedge q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r) \vee (\neg p \wedge \neg q \wedge \neg r)$.

(23) Let $L = \{p, q\}$ be a language of LTL and consider the model $M = (S, \rightarrow, I)$ of L such that $S = \{s_1, s_2, s_3, s_4, s_5, s_6\}$, $s_1 \rightarrow s_2$, $s_2 \rightarrow s_3$, $s_3 \rightarrow s_4$, $s_4 \rightarrow s_5$, $s_5 \rightarrow s_6$, $s_6 \rightarrow s_1$, $s_2 \rightarrow s_4$, $s_2 \rightarrow s_5$, $s_4 \rightarrow s_4$, $s_5 \rightarrow s_2$, $I(s_1, p) = F$, $I(s_1, q) = F$, $I(s_2, p) = T$, $I(s_2, q) = F$, $I(s_3, p) = T$, $I(s_3, q) = T$, $I(s_4, p) = F$, $I(s_4, q) = T$, $I(s_5, p) = T$, $I(s_5, q) = T$, $I(s_6, p) = T$, and $I(s_6, q) = F$. (The figure is not shown.)

A.) [5 pts.] Find a path π starting at s_1 such that

$$\pi \models G(p \rightarrow \neg q).$$

Answer: $\pi = s_1 \rightarrow s_2 \rightarrow s_4 \rightarrow s_4 \rightarrow \dots$

B.) [5 pts.] Find the set $S' \subseteq S$ of states such that $s \in S'$ iff

$$M, s \models \neg p \text{ W } (p \wedge q).$$

Answer: $S' = \{s_3, s_4, s_5\}$.

(24) [5 pts.] Let $T = (L, \Gamma)$ be a theory of FOL such that $L = (\emptyset, \{g\}, \{=, r\})$, where g is unary and r is binary, and Γ contains the following sentences:

$$\forall x, y . r(x, y) \Rightarrow r(y, x).$$

$$\forall x . r(x, g(x)).$$

Translate T into a theory $T' = (L', \Gamma')$ of STT by stating what L' and Γ' are.

Answer:

$$L' = (\{g, r\}, \tau) \text{ where } \tau(g) = (\iota \rightarrow \iota) \text{ and } \tau(r) = (\iota \rightarrow (\iota \rightarrow *)).$$

$$\Gamma' = \{\forall x, y : \iota . r(x)(y) \Rightarrow r(y)(x), \forall x : \iota . r(x)(g(x))\}.$$

(25) [5 pts.] Let $L = (\{a\}, \{f\}, \{=\})$, where f is unary, be a language of FOL. Find a set Γ of sentences of L such that $M = (D, I)$ is a model of $T = (L, \Gamma)$ iff the $I(f)$ is a function whose output value is $I(a)$ for all input values.

Answer: $\Gamma = \{\forall x . f(x) = a\}$.

(26) [10 pts.] Prove the sequent

$$\forall x . f(f(x)) = x \vdash (\forall x . P(f(x))) \rightarrow P(a)$$

by natural deduction.

Proof:

1	$\forall x . f(f(x)) = x$	premise
2	$\boxed{\forall x . P(f(x))}$	assumption
3	$P(f(f(a)))$	$\forall x \text{ e } 2$
4	$f(f(a)) = a$	$\forall x \text{ e } 1$
5	$P(a)$	$=\text{e } 4,3$
6	$(\forall x . P(f(x))) \rightarrow P(a)$	$\rightarrow\text{i } 2-5$

(27) [10 pts.] Prove the sequent

$$\forall x . \neg B(x), \exists y . B(y) \vee R(y) \vdash \exists z . R(z)$$

by natural deduction.

Proof:

1	$\forall x . \neg B(x)$	premise
2	$\exists y . B(y) \vee R(y)$	premise
3	$y_0 \quad B(y_0) \vee R(y_0)$	assumption
4	$B(y_0)$	assumption
5	$\neg B(y_0)$	$\forall x \text{ e } 1$
6	\perp	$\neg e \text{ 4,5}$
7	$\exists z . R(z)$	$\perp e \text{ 6}$
8	$R(y_0)$	assumption
9	$\exists z . R(z)$	$\exists z \text{ i } 8$
10	$\exists z . R(z)$	$\vee e \text{ 3,4-7,8-9}$
11	$\exists z . R(z)$	$\exists y \text{ e } 2, 3-10$