

Name _____

Student number _____

SE 2F03 Fall 2005

Midterm Test 2 Answer Key

Instructor: William M. Farmer

Revised: 17 November 2005

You have 50 minutes to complete this test consisting of 6 pages and 15 questions. You may use your notes and textbooks. Circle the *best* answer for the multiple choice questions, and write the answer to the other questions in the space provided. Good luck!

- (1) [4 pts.] The temporal connective X can be defined using F and R. Is this statement true or false?
 - (a) True.
 - (b) False.

- (2) [4 pts.] If a term t is free for a variable x in a formula A , then all occurrences of x in A are free. Is this statement true or false?
 - (a) True.
 - (b) False.

- (3) [4 pts.] An unwinding of a transition system is infinite even if the system contains only one state. Is this statement true or false?
 - (a) True.
 - (b) False.

- (4) [4 pts.] By the rule of universal instantiation, $T \models \forall x . \exists y . q(x, y)$ implies $T \models \exists y . q(y, y)$. Is this statement true or false?
 - (a) True.
 - (b) False.

- (5) [4 pts.] $M = (S, \cup, \cap, \neg, \emptyset, \mathbf{N}, =)$, where \mathbf{N} is the set of natural numbers and S is the set of finite subsets of \mathbf{N} , is a Boolean algebra. Is this statement true or false?
 - (a) True.
 - (b) False.

(6) [4 pts.] Let A be $\exists x . (y = x \wedge \forall z . p(f(x), y))$. Then $A[g(z)/y]$ is

- (a) $\exists x . (y = x \wedge \forall z . p(f(x), y))$.
- (b) $\exists x . (g(z) = x \wedge \forall z . p(f(x), y))$.
- (c) $\boxed{\exists x . (g(z) = x \wedge \forall z . p(f(x), g(z)))}$.
- (d) $\exists x . (y = x \wedge \forall z . p(f(x), g(z)))$.

(7) [4 pts.] If time is represented in a temporal logic by the integers, then the temporal logic would be

- (a) Continuous.
- (b) $\boxed{\text{Linear and discrete.}}$
- (c) Branching and discrete.
- (d) Linear and continuous.

(8) [4 pts.] The dual of X is

- (a) F .
- (b) G .
- (c) U .
- (d) \boxed{X} .

(9) [4 pts.] The absolute value of a real number r , written $|r|$, would be most directly formalized in first-order logic as

- (a) An individual constant.
- (b) $\boxed{\text{The application of a function symbol.}}$
- (c) The application of a predicate symbol.
- (d) An implication.

(10) [4 pts.] $\varphi \mathbin{W} \perp$ is equivalent to

- (a) $F \varphi$.
- (b) $\boxed{G \varphi}$.
- (c) $\varphi \mathbin{U} \top$.
- (d) $\boxed{\perp \mathbin{R} \varphi}$.

(11) Let $L = \{p, q\}$ be a language of LTL and consider the model $M = (S, \rightarrow, I)$ of L such that $S = \{s_1, s_2, s_3, s_4\}$, $s_1 \rightarrow s_2$, $s_2 \rightarrow s_2$, $s_3 \rightarrow s_2$, $s_1 \rightarrow s_3$, $s_3 \rightarrow s_4$, $s_4 \rightarrow s_3$, $s_4 \rightarrow s_1$, $I(s_1, p) = \text{T}$, $I(s_1, q) = \text{F}$, $I(s_2, p) = \text{F}$, $I(s_2, q) = \text{T}$, $I(s_3, p) = \text{T}$, $I(s_3, q) = \text{T}$, $I(s_4, p) = \text{F}$, and $I(s_4, q) = \text{F}$. (The figure is not shown.)

(a) [8 pts.] Find the set $S' \subseteq S$ such that $s \in S'$ iff

$$M, s \models \text{G}((p \rightarrow \text{X } q) \wedge (q \rightarrow \text{X } q)).$$

Answer: $S' = \{s_2\}$.

(b) [8 pts.] Find the set Π of paths in M such that $\pi \in \Pi$ iff

$$\pi \models (p \text{ U } \neg q) \wedge \text{G}(\neg q \rightarrow \text{X } q).$$

Answer: Π is the set of all paths of the form $s_1 \rightarrow \dots$, $s_4 \rightarrow \dots$, or $s_3 \rightarrow s_4 \rightarrow \dots$ that do not contain the transition $s_4 \rightarrow s_1$. For example, Π contains the path $s_3 \rightarrow s_4 \rightarrow s_3 \rightarrow s_2 \rightarrow s_2 \rightarrow \dots$.

(12) [10 pts.] Express the statement “at some point in the future the atom p is true three times in a row” as an LTL formula.

Answer: $\text{F}(p \wedge \text{X } p \wedge \text{XX } p)$.

(13) [10 pts.] Express the statement “the event r occurs if and only if the event s occurs first” as an LTL formula.

Answer: $(\neg r \text{ W } s) \wedge \text{F}(s \rightarrow \text{XF } r)$.

(14) [12 pts.] Prove the sequent

$$\forall x . (p(g(x)) \rightarrow q(x)), p(g(f(f(a)))) \vdash \exists y . q(f(y))$$

by natural deduction.

Proof:

1	$\forall x . (p(g(x)) \rightarrow q(x))$	premise
2	$p(g(f(f(a))))$	premise
3	$p(g(f(f(a)))) \rightarrow q(f(f(a)))$	$\forall x \text{ e } 1$
4	$q(f(f(a)))$	$\rightarrow \text{e } 2,3$
5	$\exists y . q(f(y))$	$\exists y \text{ i } 4$

(15) [12 pts.] Prove the sequent

$$\forall x . (\neg(a = x) \rightarrow p(x)), \forall x . (a = x \vee \neg(a = x)), p(a) \vdash \forall y . p(y)$$

by natural deduction. (Hint: Do a case split.)

Proof:

1	$\forall x . (\neg(a = x) \rightarrow p(x))$	premise
2	$\forall x . (a = x \vee \neg(a = x))$	premise
3	$p(a)$	premise
4	$y_0 \quad a = y_0 \vee \neg(a = y_0)$	$\forall x \text{ e } 2$
5	$a = y_0$	assumption
6	$p(y_0)$	$=e \text{ 5,3}$
7	$\neg(a = y_0)$	assumption
8	$\neg(a = y_0) \rightarrow p(y_0)$	$\forall x \text{ e } 1$
9	$p(y_0)$	$\rightarrow e \text{ 7,8}$
10	$p(y_0)$	$\vee e \text{ 4,5-6,7-9}$
11	$\forall y . p(y)$	$\forall y \text{ i } 4-10$