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What is Verification?

• Verification is the process of checking whether an

implementation of a system satisfies the requirements

of the system.

• Verification is usually impractical without computer

support for:

– Writing the documentation that the describes the

requirements and implementation of the system.

– Performing the verification.

• Verification can be applied at different levels, from high-

level design to actual code.

– Usually verification is more effective at a high level of

abstraction, while testing is more effective at a low

level.
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Proof-Based Verification

• A system is specified by a theory T in a logic and a

requirement for the system is specified by a formula R.

• T |= R means that an implementation of the system

satisfies the requirement specified by R.

• T |= R is verified by showing T `P R for some sound

proof system P for T .

– The verification method consists of the user trying to

interactively prove R from T in P.
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Specifying a System as a Theory

Three ways of that a system can be specified as a theory:

1. T specifies that the system is a relation between inputs

and outputs, and a model of T is a function from inputs

to outputs.

2. T specifies that the system is a relation between before

states and after states, and a model of T is a function

from states to states.

3. T specifies that the system is a relation between before

histories and after histories, and a model of T is a

function from histories to histories.
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Model-Based Verification

• A system is specified by a model M for a logic and a

requirement for the system is specified by a formula R.

– For example, M can be a finite state machine and R

a formula in a temporal logic.

• M |= R means that an implementation of the system

satisfies the requirement specified by R.

• M |= R is verified by showing that R is true in M .

– The verification method consists of trying to

automatically compute whether M |= R holds.
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Temporal Logic

• A temporal logic is a logic in which the value of an

expression can depend on time.

– There are many different flavors of temporal logic.

• A key attribute of a temporal logic is how time is

represented.

– Time can be represented as linear or branching.

– Time can be represented as continuous or discrete.
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Temporal Logics for Model Checking

• Linear-time Temporal Logic (LTL) is a temporal logic

where time is linear and discrete.

– Implicitly quantifies over all paths through time.

• Computation Temporal Logic (CTL) is a temporal

logic where time is branching and discrete.

– Allows explicit quantification over paths through time.
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Syntax of LTL

• A language of LTL is a set L of atoms (propositional

symbols).

– Each atom represents an atomic proposition.

• A formula of L is a string of symbols inductively defined

by the following formation rules:

– Each p ∈ L is a formula of L.

– > and ⊥ are formulas of L.

– If ϕ and ψ are formulas of L, then (¬ϕ), (ϕ∧ψ), (ϕ∨ψ),

and (ϕ→ ψ) are formulas of L.

– If ϕ and ψ are formulas of L, then, (X ϕ), (F ϕ), (G ϕ),

(ϕ U ψ), (ϕ W ψ), and (ϕ R ψ) are formulas of L.

• X, F, G, U, R, and W are temporal connectives.
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Transition Systems

• A transition system is a pair M = (S,→) such that:

– S is a set of states.

– → is a binary relation on S such that, for all s ∈ S,

there is some s′ ∈ S with s→ s′.

• When S is finite, (S,→) is a special case of a finite state

machine.

– Finite state machines may also have inputs, outputs,

and designated start and final states.

• A path in a transition system (S,→) is an infinite

sequence π = s1, s2, s3, . . . of states in S such that

si → si+1 for all i ≥ 1.

– π may be written as s1 → s2 → s3 → · · ·.
– For i ≥ 1, πi is the path si → si+1 → si+2 → · · ·.
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Semantics of LTL: Models

• Let L be a language for LTL.

• A model for L is a triple M = (S,→, I) where:

– (S,→) is a transition system.

– I is an (interpretation) function that assigns a truth

value in {t, f} to each (s, p) ∈ S × L.
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Semantics of LTL: Valuation Function (1)

The valuation function for a model M = (S,→, I) for L is
the binary function V that satisfies the following conditions
for all paths π = s1 → s2 → s3 → · · · in M and all formulas ϕ
of L:

1. Let ϕ ∈ L. Then V (π, ϕ) = I(s1, ϕ).

2. Let ϕ = >. Then V (π, ϕ) = t.

3. Let ϕ = ⊥. Then V (π, ϕ) = f.

4. Let ϕ = ¬ϕ′. Then V (π, ϕ) = t iff V (π, ϕ′) = f.

5. Let ϕ = ϕ1 ∧ ϕ2. Then V (π, ϕ) = t iff V (π, ϕ1) = t and
V (π, ϕ2) = t.

6. Let ϕ = ϕ1 ∨ ϕ2. Then V (π, ϕ) = t iff V (π, ϕ1) = t or
V (π, ϕ2) = t.

7. Let ϕ = ϕ1 → ϕ2. Then V (π, ϕ) = t iff V (π, ϕ1) = t
implies V (π, ϕ2) = t.
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Semantics of LTL: Valuation Function (2)

8. Let ϕ = X ϕ′. Then V (π, ϕ) = t iff V (π2, ϕ′) = t.

9. Let ϕ = F ϕ′. Then V (π, ϕ) = t iff, for some i ≥ 1,

V (πi, ϕ′) = t.

10. Let ϕ = G ϕ′. Then V (π, ϕ) = t iff, for all i ≥ 1,

V (πi, ϕ′) = t.

11. Let ϕ = ϕ1 U ϕ2. Then V (π, ϕ) = t iff, for some i ≥ 1,

V (πi, ϕ2) = t and, for all j = 1, . . . , i− 1, V (πj, ϕ1) = t.

12. Let ϕ = ϕ1 W ϕ2. Then V (π, ϕ) = t iff either, for some

i ≥ 1, V (πi, ϕ2) = t and, for all j = 1, . . . , i−1, V (πj, ϕ1) =

t or, for all i ≥ 1, V (πi, ϕ1) = t.

13. Let ϕ = ϕ1 R ϕ2. Then V (π, ϕ) = t iff either, for some

i ≥ 1, V (πi, ϕ1) = t and, for all j = 1, . . . , i, V (πj, ϕ2) = t

or, for all i ≥ 1, V (πi, ϕ2) = t.
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Semantics of LTL: Satisfiability

• Let L be a language of LTL, M a model for L, V the

valuation function for M , π a path in M , s a state of M ,

and ϕ a formula of L.

• π |= ϕ means V (π, ϕ) = t.

• M, s |= ϕ means π |= ϕ for every path π in M that starts

at s.

• M |= ϕ means π |= ϕ for every path π in M .
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Equivalences Between LTL Formulas

• Equivalences between duals:

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ, ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ
¬G ϕ ≡ F ¬ϕ, ¬F ϕ ≡ G ¬ϕ, ¬X ϕ ≡ X ¬ϕ
¬(ϕ U ψ) ≡ ¬ϕ R ¬ψ, ¬(ϕ R ψ) ≡ ¬ϕ U ¬ψ

• Distribution laws:

F (ϕ ∨ ψ) ≡ F ϕ ∨ F ψ, G (ϕ ∧ ψ) ≡ G ϕ ∧G ψ

• Definition of F and G:

F ϕ ≡ > U ϕ, G ϕ ≡ ⊥ R ϕ

• U vs. W:

ϕ U ψ ≡ (ϕ W ψ) ∧ F ψ, ϕ W ψ ≡ (ϕ U ψ) ∨G ϕ
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Expressibility of LTL

• A set S of temporal connectives is complete or adequate
for LTL if, for every formula of LTL, there is an equivalent
formula that only uses the temporal connectives in S.

– For example, each of {X,U}, {X,R}, {X,W} is
complete for LTL.

• Many temporal statements cannot be expressed in LTL.

• A statement that asserts the existence of certain path
cannot be expressed in LTL, but can be expressed in
CTL.

– For example, “it is possible to use the dryer to dry
clothes”.

• A statement that quantifies over time cannot be (easily)
expressed in LTL.

– For example, “it will take twice the time to accomplish
Task 2 than it takes to accomplish Task 1”.
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Model Checking

• There are tools that allow the user to:

1. Specify a software system as a model M for a temporal
logic.

2. Specify a requirement for M starting at a state s as a
formula ϕ in the temporal logic.

3. Run a model checker that determines whether
M, s |= ϕ.

• Model checking strategy for LTL:

1. Construct an automaton A¬ϕ such that, for all paths
π, π |= ¬ϕ iff the trace of π is accepted by A¬ϕ.

2. Combine A¬ϕ with the model M .

3. Determine whether there is a path in M starting at
state s whose trace is accepted by A¬ϕ. If there is
no such path, M, s |= ϕ is true. Otherwise, if there
is such a path, M, s |= ϕ is false and the path is a
counterexample.
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