

SE 2F03 Fall 2005

04 Temporal Logic and Model Checking

Instructor: W. M. Farmer

Revised: 8 November 2005

What is Verification?

- **Verification** is the process of checking whether an **implementation** of a system satisfies the **requirements** of the system.
- Verification is usually impractical without computer support for:
 - Writing the documentation that describes the requirements and implementation of the system.
 - Performing the verification.
- Verification can be applied at different levels, from high-level design to actual code.
 - Usually verification is more effective at a high level of abstraction, while testing is more effective at a low level.

Proof-Based Verification

- A system is specified by a theory T in a logic and a requirement for the system is specified by a formula R .
- $T \models R$ means that an implementation of the system satisfies the requirement specified by R .
- $T \models R$ is verified by showing $T \vdash_{\mathbf{P}} R$ for some sound proof system \mathbf{P} for T .
 - The verification method consists of the user trying to **interactively prove** R from T in \mathbf{P} .

Specifying a System as a Theory

Three ways of that a system can be specified as a theory:

1. T specifies that the system is a relation between **inputs and outputs**, and a model of T is a function from inputs to outputs.
2. T specifies that the system is a relation between **before states and after states**, and a model of T is a function from states to states.
3. T specifies that the system is a relation between **before histories and after histories**, and a model of T is a function from histories to histories.

Model-Based Verification

- A system is specified by a model M for a logic and a requirement for the system is specified by a formula R .
 - For example, M can be a finite state machine and R a formula in a temporal logic.
- $M \models R$ means that an implementation of the system satisfies the requirement specified by R .
- $M \models R$ is verified by showing that R is true in M .
 - The verification method consists of trying to **automatically compute** whether $M \models R$ holds.

Temporal Logic

- A **temporal logic** is a logic in which the value of an expression can depend on **time**.
 - There are many different flavors of temporal logic.
- A key attribute of a temporal logic is how time is represented.
 - Time can be represented as **linear** or **branching**.
 - Time can be represented as **continuous** or **discrete**.

Temporal Logics for Model Checking

- **Linear-time Temporal Logic (LTL)** is a temporal logic where time is linear and discrete.
 - Implicitly quantifies over all paths through time.
- **Computation Temporal Logic (CTL)** is a temporal logic where time is branching and discrete.
 - Allows explicit quantification over paths through time.

Syntax of LTL

- A **language** of LTL is a set L of **atoms (propositional symbols)**.
 - Each atom represents an atomic proposition.
- A **formula** of L is a string of symbols inductively defined by the following formation rules:
 - Each $p \in L$ is a formula of L .
 - \top and \perp are formulas of L .
 - If φ and ψ are formulas of L , then $(\neg\varphi)$, $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, and $(\varphi \rightarrow \psi)$ are formulas of L .
 - If φ and ψ are formulas of L , then, $(X \varphi)$, $(F \varphi)$, $(G \varphi)$, $(\varphi U \psi)$, $(\varphi W \psi)$, and $(\varphi R \psi)$ are formulas of L .
- X , F , G , U , R , and W are **temporal connectives**.

Transition Systems

- A **transition system** is a pair $M = (S, \rightarrow)$ such that:
 - S is a set of **states**.
 - \rightarrow is a binary relation on S such that, for all $s \in S$, there is some $s' \in S$ with $s \rightarrow s'$.
- When S is finite, (S, \rightarrow) is a special case of a **finite state machine**.
 - Finite state machines may also have inputs, outputs, and designated start and final states.
- A **path** in a transition system (S, \rightarrow) is an infinite sequence $\pi = s_1, s_2, s_3, \dots$ of states in S such that $s_i \rightarrow s_{i+1}$ for all $i \geq 1$.
 - π may be written as $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \dots$.
 - For $i \geq 1$, π^i is the path $s_i \rightarrow s_{i+1} \rightarrow s_{i+2} \rightarrow \dots$

Semantics of LTL: Models

- Let L be a language for LTL.
- A **model** for L is a triple $M = (S, \rightarrow, I)$ where:
 - (S, \rightarrow) is a transition system.
 - I is an (interpretation) function that assigns a truth value in $\{t, f\}$ to each $(s, p) \in S \times L$.

Semantics of LTL: Valuation Function (1)

The **valuation function** for a model $M = (S, \rightarrow, I)$ for L is the binary function V that satisfies the following conditions for all paths $\pi = s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \dots$ in M and all formulas φ of L :

1. Let $\varphi \in L$. Then $V(\pi, \varphi) = I(s_1, \varphi)$.
2. Let $\varphi = \top$. Then $V(\pi, \varphi) = t$.
3. Let $\varphi = \perp$. Then $V(\pi, \varphi) = f$.
4. Let $\varphi = \neg\varphi'$. Then $V(\pi, \varphi) = t$ iff $V(\pi, \varphi') = f$.
5. Let $\varphi = \varphi_1 \wedge \varphi_2$. Then $V(\pi, \varphi) = t$ iff $V(\pi, \varphi_1) = t$ and $V(\pi, \varphi_2) = t$.
6. Let $\varphi = \varphi_1 \vee \varphi_2$. Then $V(\pi, \varphi) = t$ iff $V(\pi, \varphi_1) = t$ or $V(\pi, \varphi_2) = t$.
7. Let $\varphi = \varphi_1 \rightarrow \varphi_2$. Then $V(\pi, \varphi) = t$ iff $V(\pi, \varphi_1) = t$ implies $V(\pi, \varphi_2) = t$.

Semantics of LTL: Valuation Function (2)

8. Let $\varphi = X \varphi'$. Then $V(\pi, \varphi) = t$ iff $V(\pi^2, \varphi') = t$.
9. Let $\varphi = F \varphi'$. Then $V(\pi, \varphi) = t$ iff, for some $i \geq 1$, $V(\pi^i, \varphi') = t$.
10. Let $\varphi = G \varphi'$. Then $V(\pi, \varphi) = t$ iff, for all $i \geq 1$, $V(\pi^i, \varphi') = t$.
11. Let $\varphi = \varphi_1 \cup \varphi_2$. Then $V(\pi, \varphi) = t$ iff, for some $i \geq 1$, $V(\pi^i, \varphi_2) = t$ and, for all $j = 1, \dots, i-1$, $V(\pi^j, \varphi_1) = t$.
12. Let $\varphi = \varphi_1 \vee W \varphi_2$. Then $V(\pi, \varphi) = t$ iff either, for some $i \geq 1$, $V(\pi^i, \varphi_2) = t$ and, for all $j = 1, \dots, i-1$, $V(\pi^j, \varphi_1) = t$ or, for all $i \geq 1$, $V(\pi^i, \varphi_1) = t$.
13. Let $\varphi = \varphi_1 \vee R \varphi_2$. Then $V(\pi, \varphi) = t$ iff either, for some $i \geq 1$, $V(\pi^i, \varphi_1) = t$ and, for all $j = 1, \dots, i$, $V(\pi^j, \varphi_2) = t$ or, for all $i \geq 1$, $V(\pi^i, \varphi_2) = t$.

Semantics of LTL: Satisfiability

- Let L be a language of LTL, M a model for L , V the valuation function for M , π a path in M , s a state of M , and φ a formula of L .
- $\pi \models \varphi$ means $V(\pi, \varphi) = \text{t}$.
- $M, s \models \varphi$ means $\pi \models \varphi$ for every path π in M that starts at s .
- $M \models \varphi$ means $\pi \models \varphi$ for every path π in M .

Equivalences Between LTL Formulas

- Equivalences between duals:

$$\neg(\varphi \wedge \psi) \equiv \neg\varphi \vee \neg\psi, \quad \neg(\varphi \vee \psi) \equiv \neg\varphi \wedge \neg\psi$$

$$\neg G \varphi \equiv F \neg\varphi, \quad \neg F \varphi \equiv G \neg\varphi, \quad \neg X \varphi \equiv X \neg\varphi$$

$$\neg(\varphi U \psi) \equiv \neg\varphi R \neg\psi, \quad \neg(\varphi R \psi) \equiv \neg\varphi U \neg\psi$$

- Distribution laws:

$$F(\varphi \vee \psi) \equiv F\varphi \vee F\psi, \quad G(\varphi \wedge \psi) \equiv G\varphi \wedge G\psi$$

- Definition of F and G:

$$F\varphi \equiv \top U \varphi, \quad G\varphi \equiv \perp R \varphi$$

- U vs. W:

$$\varphi U \psi \equiv (\varphi W \psi) \wedge F\psi, \quad \varphi W \psi \equiv (\varphi U \psi) \vee G\varphi$$

Expressibility of LTL

- A set S of temporal connectives is **complete** or **adequate** for LTL if, for every formula of LTL, there is an equivalent formula that only uses the temporal connectives in S .
 - For example, each of $\{X, U\}$, $\{X, R\}$, $\{X, W\}$ is complete for LTL.
- Many temporal statements cannot be expressed in LTL.
- A statement that asserts the existence of certain path cannot be expressed in LTL, but can be expressed in CTL.
 - For example, “it is possible to use the dryer to dry clothes”.
- A statement that quantifies over time cannot be (easily) expressed in LTL.
 - For example, “it will take twice the time to accomplish Task 2 than it takes to accomplish Task 1”.

Model Checking

- There are tools that allow the user to:
 1. Specify a software system as a model M for a temporal logic.
 2. Specify a requirement for M starting at a state s as a formula φ in the temporal logic.
 3. Run a model checker that determines whether $M, s \models \varphi$.
- Model checking strategy for LTL:
 1. Construct an automaton $A_{\neg\varphi}$ such that, for all paths π , $\pi \models \neg\varphi$ iff the trace of π is accepted by $A_{\neg\varphi}$.
 2. Combine $A_{\neg\varphi}$ with the model M .
 3. Determine whether there is a path in M starting at state s whose trace is accepted by $A_{\neg\varphi}$. If there is no such path, $M, s \models \varphi$ is true. Otherwise, if there is such a path, $M, s \models \varphi$ is false and the path is a counterexample.