
CS 2SC3 and SE 2S03 Fall 2008

Programming Exercise 3

Instructor: William M. Farmer

Revised: 31 October 2008

Files due: 30 October and 13 November 2008

The purpose of this programming exercise is to learn how to use records and
arrays in OCaml and C by implementing and testing an abstract data type
of queues.

Background

An abstract data type of queues can be defined as having the following com-
ponents:

1. A type nat of natural numbers.

2. A type element of elements that are put in a queue.

3. A type queue of queues.

4. A constructor bottom : void→ queue that creates an empty queue.

5. A selector length : queue→ nat that returns the length of a queue.

6. A selector front : queue → element that returns the element on the
front of a queue.

7. A mutator push : element, queue → void that adds an element to the
back of a queue.

8. A mutator pop : queue→ void that removes an element from the front
of a queue.

Part A

Write an OCaml program that satisfies the requirements listed below. Put
your implementation of the abstract data type of queues in a file named
queue3.ml, your test code in a file named queue test3.ml, and your log
book in a file named log.txt. Put all three of these files into a directory
named ex-3-a. Using subversion, import this directory into your directory
in the course subversion repository. Your files must be submitted no later
than 10:30 a.m. on Thursday, October 30, 2008.

1



Part B

Write a C program that satisfies the requirements listed below. Put your
implementation of the abstract data type of queues in a file named queue3.c,
your main procedure and test code in a file named queue test3.c, and your
log book in a file named log.txt. Put both of these files into a directory
named ex-3-b. Using subversion, import this directory into your directory
in the course subversion repository. Your files must be submitted no later
than 10:30 a.m. on Thursday, November 13, 2008.

Program Requirements

1. The program implements the members of the abstract data type of
queues described above as arrays of a fixed length treated as circles.

2. The type nat is implemented as int.

3. The type element is implemented as a type of records with two im-
mutable fields: (1) a field data of type string and (2) a field id of type
nat.

4. The program contains a constant max length of type nat set to 10.

5. The type queue is implemented as a type of records including the
following three fields: (1) an immutable field contents of type array
of type element, (2) a mutable field back of type nat, and (3) a mutable
field front of type nat. The array stored in the contents field has a
fixed length equal to max length. The back and front fields are indices
to the back and front members of the queue stored in the contents
field.

6. The program implements the constructor, two selectors, and two mu-
tators described above.

7. The program should handle the following three anomalous situations:

(a) Selecting the front of an empty queue.

(b) Pushing an element onto a filled queue, i.e., a queue of length
max length.

(c) Popping an empty queue.

8. The queue can “wrap” around the array. This means that, if the
queue is not filled, push increments the back field when it is less than
max length−1 and sets the back field to 0 when it equals max length−
1. That is, the first cell in the array is viewed as coming after the last
cell. If the queue is not empty, pop modifies the front field in the same
way.

2



9. The program tests the implementation of the abstract data type of
queues by making a representative series of calls to the constructor,
selectors, and mutators. The results of these calls is printed out when
the program is executed.

Notes:

1. Please put your name and MAC ID at the top of each of your files.

2. Your programs must be your own work.

3. Your programs must compile and execute correctly on either mills or
moore to receive full marks.

4. Files submitted late will receive no marks.

3


