CS 2SC3 and SE 2503 Fall 2008

Programming Exercise 4

Instructor: William M. Farmer

Revised: 9 November 2008

Files due: 20 November and 27 November 2008

The purpose of this programming exercise is to learn how to use linked
lists in OCaml and C by implementing and testing an abstract data type of
queues.

Background

An abstract data type of queues can be defined as having the following com-
ponents:

1. A type nat of natural numbers.

2. A type element of elements that are put in a queue.

3. A type queue of queues.

4. A constructor bottom : void — queue that creates an empty queue.
5. A selector length : queue — nat that returns the length of a queue.

6. A selector front : queue — element that returns the element on the
front of a queue.

7. A mutator push : element, queue — void that adds an element to the
back of a queue.

8. A mutator pop : queue — void that removes an element from the front
of a queue.

Part A

Write an OCaml program that satisfies the requirements listed below. Put
your implementation of the abstract data type of queues in a file named
queue4.ml, your test code in a file named queue_test4.ml, and your log
book in a file named log.txt. Put all three of these files into a directory
named ex-4-a. Using subversion, import this directory into your directory
in the course subversion repository. Your files must be submitted no later
than 10:30 a.m. on Thursday, November 20, 2008.



Part B

Write a C program that satisfies the requirements listed below. Put your
implementation of the abstract data type of queues in a file named queue4. c,
your main procedure and test code in a file named queue_test4.c, and your
log book in a file named log.txt. Put both of these files into a directory
named ex-4-b. Using subversion, import this directory into your directory
in the course subversion repository. Your files must be submitted no later
than 10:30 a.m. on Thursday, November 27, 2008.

Program Requirements

1.

The program implements the members of the abstract data type of
queues described above as linked lists of records of type queue_node.

. The type nat is implemented as int.

The type element is implemented as a type of records with two im-
mutable fields: (1) a field data of type string and (2) a field id of type
nat.

The type queue node includes the following two fields: (1) an im-
mutable field contents of type element and (2) an mutable field next
of type queue node reference.

The type queue is implemented as a type of records including the
following two fields: (1) a mutable field back of type queue node that
points to the back of the queue and (2) a mutable field front of type
queue node that points to the front of the queue

The program implements the constructor, two selectors, and two mu-
tators described above.

The program should handle the following two anomalous situations:

(a) Selecting the front of an empty queue.

(b) Popping an empty queue.
Nothing in your implementation should limit the length of a queue.

The program tests the implementation of the abstract data type of
queues by making a representative series of calls to the constructor,
selectors, and mutators. The results of these calls is printed out when
the program is executed.

Notes:

1.

2.

Please put your name and MAC ID at the top of each of your files.

Your programs must be your own work.



3. Your programs must compile and execute correctly on either mills or
moore to receive full marks.

4. Files submitted late will receive no marks.



