
CS 2SC3 and SE 2S03 Fall 2008

Programming Exercise 5

Instructor: William M. Farmer

Revised: 26 November 2008

Files due: 4 December 2008

The purpose of this programming exercise is to learn how to build procedures
using recursion and higher-order procedures.

Background

Let the iterator on a set A be the 3-ary higher-order function

i : (A → A),N, A → A

defined by:

i(f, n, a) =











undefined if n < 0
a if n = 0
fn(a) if n > 0

fn(a) is the result of iteratively applying the function f n times to the value
a. For instance, f3(a) = f(f(f(a))).

As an example, let i be the iterator on N and suc be the successor
function (λx : N . x + 1). Then

i(suc, n,m) = m + n.

That is, addition on N is defined by applying the iterator on N to the
successor function suc. For instance,

i(suc, 3, 2) = suc(suc(suc(2))) = ((2 + 1) + 1) + 1 = 5.

Part A

Write an OCaml program that satisfies the requirements listed below. Put
your iterator code in a file named iterator5.ml, your test code in a file
named iterator test5.ml, and your log book in a file named log.txt.
Put all three of these files into a directory named ex-5-a. Using subversion,
import this directory into your directory in the course subversion repository.
Your files must be submitted no later than 10:30 a.m. on Thursday,

December 4, 2008.

Part B

There is no Part B.

1



Program Requirements

1. The programs includes the following three implementations of an iter-
ator on an arbitrary set:

(a) iterator for : (’a -> ’a) -> int -> ’a -> ’a that is im-
plemented using a for loop.

(b) iterator nontail : (’a -> ’a) -> int -> ’a -> ’a that is
implemented using nontail recursion.

(c) iterator tail : (’a -> ’a) -> int -> ’a -> ’a that is im-
plemented using tail recursion.

2. An exception Negative argument is raised when one of the iterators
above is applied to arguments f, n, a where n is a negative integer.

3. The program includes a function

plus maker :

((int -> int) -> int -> int -> int)

-> int -> int -> int

that builds, when given one of the iterators above, the addition func-
tion on int. plus maker defines the addition function by iterating the
successor function as shown in Background section above.

4. The program includes three versions of the addition function
— named plus for, plus nontail, and plus tail — build by
applying plus maker to iterator for, iterator nontail, and
iterator tail, respectively.

5. The program includes a function

times maker :

((int -> int) -> int -> int -> int)

-> int -> int -> int

that builds, when given one of the iterators above, the multiplication
function on int. times maker defines the multiplication function by
iterating the addition function defined above.

6. The program includes three versions of the multiplication function
— named times for, times nontail, and times tail — build
by applying times maker to iterator for, iterator nontail, and
iterator tail, respectively.

7. The program includes a function

2



exp maker :

((int -> int) -> int -> int -> int)

-> int -> int -> int

that builds, when given one of the iterators above, the exponentiation
function on int. exp maker defines the exponentiation function by
iterating the multiplication function defined above.

8. The program includes three versions of the multiplication function
— named exp for, exp nontail, and exp tail — build by applying
exp maker to iterator for, iterator nontail, and iterator tail,
respectively.

9. The program tests the implementation of the iterators and the plus,
times, and exponention makers by verifying that:

(a) Each of plus for, plus nontail, and plus tail is equal to the
addition function on int.

(b) Each of times for, times nontail, and times tail is equal to
the multiplication function on int.

(c) Each of exp for, exp nontail, and exp tail is equal to the
exponentiation function on int.

Notes:

1. Please put your name and MAC ID at the top of each of your files.

2. Your programs must be your own work.

3. Your programs must compile and execute correctly on either mills or
moore to receive full marks.

4. Files submitted late will receive no marks.

3


