CS 25C3 and SE 2503 Fall 2008

01 Programming Languages

William M. Farmer

Department of Computing and Software
McMaster University

17 September 2008

S



Software Development Phases

1.

Requirements: What is the problem that needs to be
solved? What are the product requirements that need to
be satisfied?

. Design: How will the problem be solved? How will the

product requirements be satisfied?

Implementation: What is a solution to the problem?
What is an executable implementation of the design?

Verification: What behavior does the product exhibit? s
the behavior correct?

Delivery and Maintenance: How will the product be
delivered? What needs to be maintained? How will it be
maintained?



Software Life Cycle Models

@ Waterfall model:

» Development follows the logical order of the phases
given above in a linear fashion.

» |s an idealization of the software development process
that is rarely realized.

@ Other life cycle models:

» Refinement
» |Incremental
» Spiral

» Prototyping



What is a Program?

@ A program is the executable part of a software product.

@ A program is most often viewed as a sequence of
instructions for a machine.

» An understanding of a program requires an
understanding of the machine.

@ A machine language program is a sequence of instructions
for a physical machine.

» Usually represented as a sequence of Os and 1s.
» Not intelligible to humans.

@ A high-level language program can be viewed as a
sequence of instructions for a high-level abstract machine.

» Easier to understand because the machine is simpler.
» Ultimately executed on a physical machine.



Other Ways of Viewing Programs

@ As a small abstract machine.
» Good because the machine can be simple.
@ As a function that maps inputs to outputs.
» Good if the program has no side-effects.
@ As an expression in a formal language.

» The syntax of the expression is the program.

» The semantics of the expression is the behavior of the
program.

» Good if the language is well behaved.

@ As a constructive proof of an existential formula.

» Very impractical with today's technology.



Ways of Classifying Programs

@ Sequential vs. concurrent.
@ Terminating vs. nonterminating.
@ Subject-invoked vs. event-triggered.

@ Applicative vs. systemic.

CS 35C3 / SE 2503 focuses on programs that are sequential,
terminating, subject-invoked, and applicative.



Programming Languages

Programming languages are intended to facilitate program
implementation but not necessarily program design.

Program languages have a syntax and a semantics:

» The syntax concerns the structure of the programs.

» The semantics concerns the behavior of the programs.

» Most programming language have a precise syntax; few
have a precise semantics.

Programming languages support various programming
styles called programming paradigms.

Implementations of programming languages support
various modes of execution.

|deally, the design of a program should not be restricted
by the programming language chosen for implementing
the design.



Programming Paradigms
Chief programming paradigms:

1. Imperative. Program statements modify a program state.

2. Object Oriented. Data and procedures are organized into
units called objects.

3. Functional. Functions are evaluated without moditfying a
program state.

4. Logical. Answers to questions are deduced from logical
statements.

Some other programming paradigms:

1. Visual.

2. Constraint.

3. Scripting.

4. Language Oriented.



Modes of Program Execution

1. The program can be compiled into native machine code.

» Advantage: The machine code is optimized to run fast.
» Disadvantage: Code development is more difficult.
> . C, C++, Fortran, Lisp, OCaml.

2. The program can be interpreted directly line by line.

» Advantage: Supports interactive development and
debugging of code.
» Disadvantage: Interpreting code is generally slower than

executing compiled code.
- . Lisp, Smalltalk, OCaml.

3. The program can be compiled into bytecode for a virtual
machine that is either interpreted or compiled.

» Advantage: Programs are more portable.
= . Java, Perl, Python,
OCaml.



Objective Caml (OCaml)
@ Developed in 1996 at INRIA in France.

@ A member of the ML family of programming languages.

>

ML stands for metalanguage.

@ A multiparadigm programming language: imperative,
object-oriented, functional.

@ Three modes of execution: compilation to native machine
code, interpretation, compilation to bytecode.

@ Notable characteristics:

>

v v v v v

Powerful type system with type inference.
Automatic garbage collection.

Syntax matching.

Exception handling.

High execution speed.

Modules and functors (parametric modules).

10



The C Programming Language

@ Developed by Dennis Ritchie in 1972 at AT& T Bell Labs.

@ Intermediate level language designed for system
programming for the Unix operating system.

@ A single paradigm programming language: imperative.

@ Usually has a single mode of execution: compilation to
native machine code.

@ Notable characteristics:

» Weak typing.

Low-level access to memory.

Extensive use of explicit pointers.

Preprocessor for macro definition.

Major functionality provided by library routines.
Very high execution speed.

vV v v v Y%

11



