
CS 2SC3 and SE 2S03 Fall 2008

01 Programming Languages

William M. Farmer

Department of Computing and Software
McMaster University

17 September 2008



Software Development Phases

1. Requirements: What is the problem that needs to be
solved? What are the product requirements that need to
be satisfied?

2. Design: How will the problem be solved? How will the
product requirements be satisfied?

3. Implementation: What is a solution to the problem?
What is an executable implementation of the design?

4. Verification: What behavior does the product exhibit? Is
the behavior correct?

5. Delivery and Maintenance: How will the product be
delivered? What needs to be maintained? How will it be
maintained?

2



Software Life Cycle Models

Waterfall model:

I Development follows the logical order of the phases
given above in a linear fashion.

I Is an idealization of the software development process
that is rarely realized.

Other life cycle models:

I Refinement
I Incremental
I Spiral
I Prototyping

3



What is a Program?

A program is the executable part of a software product.

A program is most often viewed as a sequence of
instructions for a machine.

I An understanding of a program requires an
understanding of the machine.

A machine language program is a sequence of instructions
for a physical machine.

I Usually represented as a sequence of 0s and 1s.
I Not intelligible to humans.

A high-level language program can be viewed as a
sequence of instructions for a high-level abstract machine.

I Easier to understand because the machine is simpler.
I Ultimately executed on a physical machine.

4



Other Ways of Viewing Programs

As a small abstract machine.

I Good because the machine can be simple.

As a function that maps inputs to outputs.

I Good if the program has no side-effects.

As an expression in a formal language.

I The syntax of the expression is the program.
I The semantics of the expression is the behavior of the

program.
I Good if the language is well behaved.

As a constructive proof of an existential formula.

I Very impractical with today’s technology.

5



Ways of Classifying Programs

Sequential vs. concurrent.

Terminating vs. nonterminating.

Subject-invoked vs. event-triggered.

Applicative vs. systemic.

CS 3SC3 / SE 2S03 focuses on programs that are sequential,
terminating, subject-invoked, and applicative.

6



Programming Languages

Programming languages are intended to facilitate program
implementation but not necessarily program design.

Program languages have a syntax and a semantics:

I The syntax concerns the structure of the programs.
I The semantics concerns the behavior of the programs.
I Most programming language have a precise syntax; few

have a precise semantics.

Programming languages support various programming
styles called programming paradigms.

Implementations of programming languages support
various modes of execution.

Ideally, the design of a program should not be restricted
by the programming language chosen for implementing
the design.

7



Programming Paradigms

Chief programming paradigms:

1. Imperative. Program statements modify a program state.

2. Object Oriented. Data and procedures are organized into
units called objects.

3. Functional. Functions are evaluated without modifying a
program state.

4. Logical. Answers to questions are deduced from logical
statements.

Some other programming paradigms:

1. Visual.

2. Constraint.

3. Scripting.

4. Language Oriented.

8



Modes of Program Execution

1. The program can be compiled into native machine code.

I Advantage: The machine code is optimized to run fast.
I Disadvantage: Code development is more difficult.
I Compiled languages: C, C++, Fortran, Lisp, OCaml.

2. The program can be interpreted directly line by line.

I Advantage: Supports interactive development and
debugging of code.

I Disadvantage: Interpreting code is generally slower than
executing compiled code.

I Interpreted languages: Lisp, Smalltalk, OCaml.

3. The program can be compiled into bytecode for a virtual
machine that is either interpreted or compiled.

I Advantage: Programs are more portable.
I Languages compiled into bytecode: Java, Perl, Python,

OCaml.
9



Objective Caml (OCaml)

Developed in 1996 at INRIA in France.

A member of the ML family of programming languages.

I ML stands for metalanguage.

A multiparadigm programming language: imperative,
object-oriented, functional.

Three modes of execution: compilation to native machine
code, interpretation, compilation to bytecode.

Notable characteristics:

I Powerful type system with type inference.
I Automatic garbage collection.
I Syntax matching.
I Exception handling.
I High execution speed.
I Modules and functors (parametric modules).

10



The C Programming Language

Developed by Dennis Ritchie in 1972 at AT&T Bell Labs.

Intermediate level language designed for system
programming for the Unix operating system.

A single paradigm programming language: imperative.

Usually has a single mode of execution: compilation to
native machine code.

Notable characteristics:

I Weak typing.
I Low-level access to memory.
I Extensive use of explicit pointers.
I Preprocessor for macro definition.
I Major functionality provided by library routines.
I Very high execution speed.

11


