
CS 2SC3 and SE 2S03 Fall 2008

02 Simple Procedures

William M. Farmer

Department of Computing and Software
McMaster University

30 October 2008

Values

In programming, values are the entities that are
manipulated by programs.

Examples:

I Numbers (integers and floating point numbers).
I Booleans.
I Characters and strings.
I Tuples.
I Lists.
I Functions.

In a programming language, some values are primitive,
i.e., they are built into the language; others are created as
needed by the programmer.

2

Expressions

An expression is a syntactic entity that denotes a value.

I C Example: 2 + x
I OCaml Example: 2 + x

The value of an expression is obtained by evaluating the
expression.

The evaluation of an expression may in some cases cause
a program’s state to be modified.

I This is known as a side-effect.

3

Statements

A statement is a syntactic entity that states something to
be done.

I C Example: x = 0;
I OCaml Example: x := 0

The effect of a statement is obtained by executing the
statement.

Two statements are usually separated by a semicolon (;).

An expression with side-effects can be viewed as a
statement.

A statement can be viewed as an expression with
side-effects that does not denote a meaningful value.

In a programming language that is both imperative and
functional, statements are considered expressions.

A purely functional programming language does not use
statements (or expressions with side-effects).

4

Declarations and Definitions

A declaration states that a name will be used for a
particular purpose.

I C Example: int x;

A definition states that a name is assigned a particular
value.

A definition may include a declaration of the name being
defined.

I OCaml Example: let x = 0

5

Types

A type is a syntactic entity t that denotes a set s of
values.

I t and s are often confused with each other.

OCaml example: The type int denotes the set of
machine integers.

Types are used in a variety of ways:

1. To classify values.
2. To restrict the values of variables.
3. To control the formation of expressions.
4. To classify expressions by their values.

Types are also used as mini-specifications.

6

Variables

The meaning of “variable” is different in logic, control
theory, and programming.

In logic, a variable is a symbol that denotes an
unspecified value.

I Example: ∀ x . x < x + 1.

In control theory, a variable is a changing value that is a
component of the state of a system.

I A monitored variable is a variable the system can
observe but not change.

I A controlled variable is a variable the system can both
observe and change.

In programming, a variable is a name bound to a value.

I OCaml example: let x = 0

7

Constants

The meaning of “constant” is different in logic, control
theory, and programming.

In logic, a constant is a symbol that denotes a specified
value.

In control theory, a constant is an unchanging value.

In programming, a constant is a name bound to an
immutable value.

I A constant is a read-only variable.
I The use of constants is essential for code readability and

software maintenance.

8

Scope

The scope of a variable x bound to a value v is the region
of program code in which the binding is effective.

I The scope is usually the region of code from the place
where x was first bound to the end of the smallest
enclosing “block” of code.

I A variable x is only visible in its scope, i.e., outside of its
scope x will normally not be bound to v .

If x is rebound within its scope, a new scope of x is
created in which the old binding is not visible.

I Different variables with different scopes may have the
same name.

A variable is global if its scope is unrestricted.

A variable is local if its scope is restricted.

In accordance with the Principle of Least Privilege, the
scope of a variable name should be as narrow as possible.

9

Numbers

A numeric type is a type of values representing numbers.

Most programming language have several numeric types.

Examples:

I A type of machine integers or fixnums is a finite set of
integers that can be represented in a machine word.

I A type of bignums is the complete infinite set of integers.
I A type of fixed-point numbers is a finite set of rational

numbers expressed in a fixed decimal format.
I A type of floating-point numbers is a finite set of

rational numbers expressed in scientific notation.
I A type of rationals is the complete infinite set of

rationals.

Each numeric type has its own set of arithmetic operators.

I Sometimes the operators are shared between different
numeric types.

10

OCaml int and float Types

int is the OCaml type of 31-bit or 63-bit machine
integers.

The arithmetic operators for int are:
I Addition (+).
I Unary negation and binary subtraction (-).
I Multiplication (*).
I Integer division (/).
I Division remainder (mod).

float is the OCaml type of double-precision floating-point
numbers (53-bit coefficient, 11-bit exponent, 1-bit sign).

The arithmetic operators for float are:
I Addition (+.).
I Unary negation and binary subtraction (-.).
I Multiplication (*.).
I Division (/.).
I Exponentiation (**).

11

Booleans

A boolean is a standard truth value, either true or false.

I In OCaml, the truth values are named true and false.

The type of booleans consists of the two boolean values.

I Named bool in OCaml.

A formula is an expression of type boolean.

Propositional operators like ¬,∧,∨,⇒ combine formulas.

In OCaml, the proposition operators are:

I Negation (not).
I Sequential and (&&).
I Sequential or (||).

Equations and inequalities are common formulas.

In OCaml, these are formed using the following operators:
=, ==, <>, !=, <, >, <=, >=.

12

Characters and Strings

A character is a member of an alphabet.

The ASCII alphabet contains 128 characters
corresponding to the integers 0, . . . , 127.

I A “text file” is usually a file of ASCII characters.

In OCaml, the character type char corresponds to the
integers 0, . . . , 255 with the ASCII characters being the
first 128 members of the type.

A string is a finite sequence "c1 · · · cn" of characters.

The empty string is the string "" of no members.

In OCaml, the string type string is the set of strings of
characters of char with length ≤ 224 − 6.

Strings are appended with a concatenation operator (^).

I OCaml example: "abc" ^ "XYZ" = "abcXYZ".

13

Tuples

An n-tuple is finite sequence (a1, . . . , an) of values of
possibly different types.

A cartesian product A1 × · · · × An is the set of n-tuples
(a1, . . . , an) such that ai ∈ Ai for all i with 1 ≤ i ≤ n.

In OCaml, the cartesian product of types t1, . . . , tn is
written

t1* · · · *tn.
A pair is a 2-tuple (a1, a2).

The OCaml function fst [snd] chooses the first [second]
member of a pair.

Tuples can be implemented as records.

14

Lists

A list is a finite sequence [a1, . . . , an] of values of the
same type.

The empty list is the list [] of no members.

In OCaml, a list [a1, . . . , an] is written

[a1; . . . ;an]

and the type of lists of type t is written

t list.

Operators on lists:

I cons(a, [b1, . . . , bn]) = [a, b1, . . . , bn] (infix ::).
I append([a1, . . . , an], [b1, . . . , bn]) =

[a1, . . . , an, b1, . . . , bn] (infix @).
I head([a1, . . . , an]) = a1 if n ≥ 1 (List.hd).
I tail([a1, . . . , an]) = [a2, . . . , an] if n ≥ 1 (List.tl).

Lists can be implemented as arrays.

15

Conditionals

A conditional is an expression if(A, b, c) where:

1. A is a formula.
2. b and c are expressions of the same type.

The value of if(A, b, c) is b if A is true and is c if A is
false.

In OCaml, if(A, b, c) is written as

if A then b else c .

16

(Unary) Functions

Definition 1: A function is a rule f : I → O that
associates members of I (inputs) with members of O
(outputs).

I Every input is associated with at most one output.
I Some inputs may not be associated with an output.

Example: f : Z → Q where x 7→ 1/x .

Definition 2: A function is a set f ⊆ I × O such that if
(x , y), (x , y ′) ∈ f , then y = y ′.

Each function f has a domain D ⊆ I and a range R ⊆ O.

I f is total if D = I and partial if D ⊂ I .

17

Lambda Notation

Lambda notation is a precise, convenient way to define
functions.

If B is an expression of type t,

λ x : s . B

denotes a function f : s → t such that f (a) = B[x 7→ a].

Example: Let f = λ x : R . x ∗ x .

I f (2) = (λ x : R . x ∗ x)(2) = 2 ∗ 2.
I f denotes the squaring function.

In OCaml, a function λ x : t . x ∗ x is written as

function (x : t) -> x * x

or more simply as

function x -> x * x

18

Procedures

A procedure is a unit of code that implements a function.

Procedures are also called functions, subroutines, and
methods.

Unlike mathematical functions, procedures can have
side-effects.

A procedure may produce no output and be useful only by
virtue of its side-effects.

19

n-Ary Functions

Definition 1: For n ≥ 0, an n-ary function is a rule
f : I1, . . . , In → O that associates members of I1, . . . , In
(inputs) with members of O (outputs).

I Every list of inputs is associated with at most one
output.

I Some lists of inputs may not be associated with an
output.

Definition 2: For n ≥ 0, an n-ary function is a set
f ⊆ I1 × · · · × In × O such that if
(x1, . . . , xn, y), (x1, . . . , xn, y

′) ∈ f , then y = y ′.

Each function f has a domain D ⊆ I1 × · · · × In and a
range R ⊆ O.

20

Representing n-Ary Functions as Unary Functions

There are two ways of representing a n-ary function as a unary
function:

1. As a function on tuples: f : I1, . . . , In → O is represented
as

f ′ : I1 × · · · × In → O

where

f (x1, . . . , xn) = f ′((x1, . . . , xn)).

2. As a curryed function: f : I1, . . . , In → O is represented as

f ′′ : I1 → (I2 → (· · · (In → O) · · ·))
where

f (x1, . . . , xn) = f ′′(x1) · · · (xn).

21

Example

Let f = λ x , y : R . x2 + y 2.

f ′ = λ p : R× R . [fst(p)]2 + [snd(p)]2.

f ′((a, b)) = (λ p : R× R . [fst(p)]2 + [snd(p)]2)((a, b))
= [fst((a, b))]2 + [snd((a, b))]2

= a2 + b2.

f ′′ = λ x : R . λ y : R . x2 + y 2.

f ′′(a)(b) = (λ x : R . λ y : R . x2 + y 2)(a)(b)
= (λ y : R . a2 + y 2)(b)
= a2 + b2.

22

Functions in OCaml

All functions in OCaml are unary.

n-ary functions are represented as curryed functions.

A function may be higher-order, i.e., it may take other
functions as input.

A function may be defined recursively.

Functions are stored as closures consisting of:

1. The name of the function’s formal parameter.
2. The body of the function.
3. The environment of the name-value bindings in which

the function was defined.

The syntax

let f p1 · · · pn = expr

is a short form for

let f =
function p1 -> · · · -> function pn -> expr.

23

Recursion

Recursion is a method of defining something in terms of
itself.

I One of the most fundamental ideas of computing.
I An alternative to iteration (loops).
I Can make some programs easier to describe, write, and

prove correct.

Both procedures and data structures can be defined by
recursion.

A set of procedures or data structures can be defined by
mutual recursion.

The use of recursion requires care and understanding.

I Recursive definitions can be nonsensical (i.e.,
nonterminating).

I Sloppy use of recursion can lead to total confusion.
I Correctness is proved by induction.

24

Recursion in OCaml

The syntax to define a function f by recursion is:

let rec f p1 · · · pn = expr.

The syntax to define functions f1, f2, . . . , fn by mutual
recursion is:

let rec f1 p1 · · · pn = expr1
and f2 p1 · · · pn = expr2

...
and fn p1 · · · pn = exprn

Values other than functions may also be defined by
recursion.

Local definitions may be recursive.

25

Temporal Distinctions in Programming

There are three main programming time periods:

1. Design time is the time period during which a program is
written.

2. Compile time is the time period during which a program
is compiled.

3. Run time is the time period during which a program is
executed.

Requirements, decisions, checks, errors, etc. are often
associated with one of these three time periods.

26

Types in OCaml

OCaml is a strictly typed language.
Each OCaml expression is assigned a unique static type.

I A type is static if it is determined at compile time.
I A type is dynamic if it is determined at run time.

OCaml is type safe — type failures cannot occur when a
type-checked OCaml expression is evaluated.
Types may be parameterized by type variables.
An expression of a parameterized type is polymorphic —
which means it can be used in contexts that require
different types.
Most types do not have to be explicitly declared in
expressions.

I The missing type declarations are inferred if possible.

A expression e of a parameterized type or unspecified
type can be constrained to a particular type t using the
syntax (e : t).

27

Executing OCaml: Toplevel System

The toplevel system for OCaml is an interactive
read-eval-print loop.

The toplevel system is started by the command ocaml.

OCaml phrases are repeatedly read, type-checked,
compiled, executed, and then the results of the execution
are printed.

A list of OCaml phrases can be executed as a script.

28

Executing OCaml: Native Code Compilation

The OCaml native-code compiler ocamlopt compilers
OCaml source code files to native code object files and
links these object files to produce standalone executables.

Example: ocamlopt -o nc-prog prog.ml

Native code compilation results in slower compilation
time, faster run time.

29

Executing OCaml: Bytecode Compilation

The OCaml bytecode compiler ocamlc compiles OCaml
source files to bytecode object files and links these object
files to produce standalone bytecode files.

Example: ocamlc -o bc-prog prog.ml

A standalone bytecode file can be executed by the OCaml
bytecode interpreter ocamlrun.

Bytecode compilation results in faster compilation time,
slower run time.

30

C: Variables

A variable in C is bound to a location that can hold a
value of a certain type.

I For example, a variable of type int is bound to a
memory location that can hold a value of type int.

Hence, every variable in C has:
I A name.
I A type.
I A location (its direct value).
I A value (its indirect value).

The statement

int i;

declares a variable with name i and type int.

The statement

const int two = 2;

declares a constant with name two, type int, and value 2.
31

C: The Structure of a Simple Program

Here is a simple C program:

include <stdio.h>

int main ()

{

printf("Hello!\n");

return 0;

}

main is the procedure that starts the execution when the
program is invoked.

main takes no input and returns a value of type int as
output.

32

C: Native Code Compilation

A C native-code compiler such as gcc compilers C source
code files to native code object files and links these object
files to produce standalone executables.

Example: gcc -o prog prog.c

33

C: Numbers

C contains several primitive numeric types; the most
important are:

I char, a type of machine integers representing characters.
I int, a type of medium-size machine integers.
I double, a type of double-precision floating point

numbers.

The sizes of numeric types in C vary across hardwares and
compilers.

Numeric types of C are not strictly typed:

I The types share a common set of arithmetic operators
(+, -, *, /, %).

I Numeric values of the wrong type are automatically
coerced to the right type.

Danger: Numeric value coercion may lead to incorrect or
unexpected results.

34

C: Booleans

C does not have a primitive boolean type.

The standard C library with header <stdbool.h>
provides a type bool with expressions true and false

denoting the two truth values.

In C, the proposition operators are:

I Negation (!).
I Sequential and (&&).
I Sequential or (||).

C has the following set of operators for forming equations
and inequalities: ==, !=, <, >, <=, >=.

35

C: Conditionals

In C, a conditional expression if(A, b, c) is written as

A ? b : c

In C, a conditional statement “If A then do b else do c”
is written as

if A
b;

else
c;

The else part of the conditional statement is optional.

36

C: Procedures (1/2)

Procedures in C are called functions.

The definition of a function has the following form:

t f (t1 p1, . . . , tn pn)
{

B
}

t is the type of the value that is returned by a return

statement in the body B .

f is the name of the function.

t1 p1, . . . , tn pn is the parameter list of the function. ti is
the type of the parameter pi .

B is the body of the function consisting of a list of
definitions and statements.

t f (t1 p1, . . . , tn pn); is the function header or function
prototype for the function.

37

C: Procedures (2/2)

A function prototype for a function f declares f with its
type (which is given indirectly).

Every function in C must be declared before it can be
applied. (Synonyms for “applied” are “called” and
“invoked”.)

Unlike OCaml, all executable code in a C program is
contained in some function body.

Unlike OCaml, a C function cannot be defined inside
another function.

Unlike OCaml, the application of a C function is only
weakly type checked.

Like OCaml, functions in C can be defined by recursion
(but tail-recursive functions are usually not executed in
constant space).

38

Summary

This topic has very briefly presented the basic ideas of the
functional programming paradigm and has shown how
these ideas are implemented in OCaml and C.

We know enough now about OCaml to do some serious
programming because OCaml supports the functional
programming paradigm.

The next topic will present the basic ideas of the
imperative programming paradigm.

After we finished the next topic, we will know enough
about OCaml and C to program in the imperative style.

39

