
CS 2SC3 and SE 2S03 Fall 2008

03 Control Structures

William M. Farmer

Department of Computing and Software
McMaster University

8 October 2008

Data Structures

A data structure is a portion of memory that holds a
structured collection of values.

I A data structure may be itself a value.

Various operators are associated with each kind of data
structure:

I Constructors for creating data structures.
I Selectors for retrieving the values in data structures.
I Mutators for modifying the values in data structures.

Access to these operators needs to be controlled to
ensure data privacy, integrity, and availability.

Some data structures do not have mutators.

The imperative programming paradigm heavily uses
mutable data structures.

The functional programming paradigm avoids using
mutable data structures.

2

Example: Pairs

A pair is a data structure that holds an order pair 〈a, b〉
of two values a and b with unspecified types.

Constructor:

I pair(a, b) creates a data structure p holding 〈a, b〉.

Selectors:

I get-fst(p) returns a, the first value in p.
I get-snd(p) returns b, the second value in p

Mutators:

I set-fst(p, x) sets a, the first value in p, to x .
I set-snd(p, x) sets b, the second value in p, to x .
I Note: a and x (as well as b and x) need not have the

same type.

3

Use of Pairs

The pair data structure can be used to build many other
useful data structures.

I It is the chief data structure of Lisp.

Pairs can be used to define tuples:

(a1, a2) = 〈a1, a2〉.
(a1, . . . , an) = 〈a1, (a2, . . . , an)〉 for n ≥ 3.

Pairs can be used to define lists:

I [] = nil, some special value.
I [a1] = 〈a1, []〉.
I [a1, . . . , an] = 〈a1, [a2, . . . , an]〉 for n ≥ 2.

4

Example: References

A reference of type t is a data structure that holds a
value of type t.

A reference is said to reference or point to its value.

In OCaml, ref is a polymorphic type of references.

Constructor: ref expr constructs a reference of the type
of t ref where t is the type of expr.

I Example: let x = ref 8 ;;

Selector: If expr is a reference, !expr selects the
referenced value of the reference.

I Example: !x ;;

Mutator: If expr1 is a reference of type t and expr2 is a
value of type t, then expr1 := expr2 sets the referenced
value of expr1 to expr2.

I Example: x := 7 ;;

5

References in C

References are implemented in C as memory addresses.

A reference of type t is a memory address of a location
that can hold a value of type t.

In C, a variable of type t is bound to a reference of type t.

Constructor: int x; constructs a reference of type int

and binds x to it.

Value selector: x; selects the referenced value (of the
reference x is bound to).

Address selector: &x; selects the address (of the
reference x is bound to).

Mutator: x = 3; sets the referenced value (of the
reference x is bound to) to 3.

6

Control Structures

A control structure controls the execution of statements
in a program.
Before control structures were invented, execution was
controlled in an unstructured manner using conditionals
and goto statements.

I This made the control flow of the program exceedingly
difficult to understand.

There are three main categories of control structures:
1. Sequential control structures allow a sequence of

statements to be executed one after another.
2. Conditional control structures allow a statement to be

selected for execution on the basis of whether a
condition evaluates to true or false.

3. Iterative control structures allow a statement to be
repeatedly executed.

There are several kinds of control structures in each of
these categories. 7

Block

A block is a sequential control structure that treats a
sequence of statements as a single statement.

The statements in a block are executed left to right.

OCaml has two syntaxes for blocks:

(expr1; · · · ; exprn)
begin expr1 ; · · · ; exprn end

C has the following syntax for blocks:

{stmt1 · · · stmtn}

8

For Loop

The for loop is an iterative control structure that executes
a statement for a certain number of times.
For loop iteration is normally bounded.
OCaml has two syntaxes for blocks:

for name = expr1 to expr2 do expr3 done
for name = expr1 downto expr2 do expr3 done

where expr1 and expr2 are expressions of type int and
expr3 is an expression of type unit.
C has the following syntax for for loops:

for (expr1; expr2; expr3) stmt

which is equivalent to
expr1;
while (expr2) {

stmt
expr3;

}
9

While Loop

The while loop is an iterative control structure that
executes a statement as long as a condition is true.

While loop iteration is unbounded.

The while loop is more general than the for loop; it can
simulate a for loop.

OCaml has the following syntax for while loops:

while expr1 do expr2 done

where expr1 is of type bool and expr2 is of type unit.

C has the following syntax for while loops:

while (expr) stmt

10

