
CS 2SC3 and SE 2S03 Fall 2008

04 Records and Arrays

William M. Farmer

Department of Computing and Software
McMaster University

5 November 2008

Records

A record is a data structure that holds a tuple whose
members are named.

The members of a record are called fields and are indexed
by their names.

Records are also called structures (as in C).

The type of a record is declared before a record is defined.

The fields of a record are usually mutable.

Records of a type t have a constructor, an indexed
selector, and possibly an indexed mutator.

2

Records in OCaml

Record type declaration:

type rec-type = {name1 : t1; . . . ; namen : tn} ;;

Constructor:

{name1 = expr1; . . . ; namen = exprn}
Selector:

e.n

where e is an expression of a record type having a field
named n.

A field in a record is mutable if it is declared mutable:

type rec-type = { . . . ; mutable namei : ti; . . . } ;;

Mutator:

e1.n <- e2

where e1 is an expression of a record type having a
mutable field named n and e2 is of the same type as e1.n.

3

Arrays

An array is a data structure that holds a list such that
each member in the list can be directly accessed and
modified.

The members of an array are called cells and are indexed
by natural numbers.

Arrays usually have a constructor, an indexed selector,
and an indexed mutator.

Arrays may be multidimensional.

I A one-dimensional array is called a vector (as in OCaml).

Strings are often implemented as arrays (as in C and
OCaml).

4

Arrays in OCaml

Constructor:

[|expr1; . . . ; exprn|]

Selector:

e1.(e2)

where e1 is an expression denoting a vector and e2 is an
expression denoting a value i of type int with
0 ≤ i ≤ n − 1 where n is the length of the vector.

Mutator:

e1.(e2) <- e3

The Array module contains several other constructors,
selectors, and mutators including create, append, and
length.

5

Character Strings in OCaml

Strings are a special kind of array in OCaml.

Constructor:

"c1c2 · · · cn"

Selector:

e1.[e2]

Mutator:

e1.[e2] <- e3

6

Anomalies and Exceptions

An anomaly is an unexpected behavior by a service.

An exception is a signal to the client of a service that an
anomaly has been exhibited by a service.

I An exception is thrown or raised when the anomaly
occurs.

A thrown exception is caught by an appropriate exception
handler that tries to handle the exception.

Ways an exception can be handled:

1. An attempt is made to recover from the anomaly.
2. The exception is thrown higher up the uses chain.
3. The state of the program providing the service is repaired

as best as possible and then the service is allowed to fail.

Exceptions can be used to change the normal flow of
control.

7

Exceptions in OCaml

Exception declaration:

exception cap-name ;;

Raising an exception:

raise cap-name ;;

Catching and handling an exception:

try expr with
|p1 -> expr1

...
|pn -> exprn

8

Stacks

A stack is a data structure that holds a list such that the
elements are accessed according to the principle of last in
first out (LIFO).

Stacks are employed extensively in computer systems.

Constructor:

bottom : void → stack.

Selectors:

height : stack → nat.
top : stack → element.

Mutators:

push : element, stack → void.
pop : stack → void.

9

Queues

A queue is a data structure that holds a list such that the
elements are accessed according to the principle of first in
first out (FIFO).

Constructor:

empty : void → queue.

Selectors:

length : queue → nat.
front : queue → element.

Mutators:

push : element, queue → void.
pop : queue → void.

10

Abstract Data Types

An abstract data type (ADT) is a set of data and a set of
operations that can be applied to the data.

I The data and operations are described abstractly
without reference to how they are implemented.

ADTs are essentially the same as algebras in algebraic
specification and mathematical structures in mathematics.
In many ADTs, the set of data is recursively defined by
the operations.

I Examples: Natural numbers, lists, stacks, trees.

An ADT is a special case of a module that consists of an
interface and an implementation.
ADTs support the Principle of Separation of Concerns:
the interface of an ADT is separated from its
implementation.
ADTs support the Principle of Information Hiding: The
“secret” of the ADT is hidden from the user.

11

Pointers in C

A pointer in C is a variable of a reference type.
I Reference types in C are called pointer types.
I The value of a pointer is a memory address that refers or

points to a value.

Constructor:
I int * ip = NULL;
I int * ip = &i;

creates a pointer of pointer type int *.
Selector for dereferencing:

I *ip

denotes the value that the pointer ip points to.
Mutator for dereferencing:

I *ip = i;

sets the value that the pointer ip points to.
Pointers are used extensively in C.

I Dangerous and tricky, they must be used very carefully!
12

Pointer Arithmetic in C

The sizeof operator takes a variable x or type t as input
returns an integer that is the number of 8-bit bytes
reserved for x or t.

A pointer p of type t can be viewed as an index into a
giant array of cells of size sizeof(t):

I p + 1 (pointer addition) is the next index into this giant
array.

I p− 1 (pointer subtraction) is the previous index into this
giant array.

Pointer arithmetic is not valid with void pointers because
values of type void do not have a fixed size.

Pointer arithmetic provides a powerful and uniform
mechanize for accessing memory, but it can lead to
dangerous and undesired memory access.

13

Evaluation Strategies

Let p be a procedure with parameters x1, . . . , xn that is
applied to arguments a1, . . . , an.

An evaluation strategy is a set of rules for evaluating
p(a1, . . . , an), an application of p to a1, . . . , an.

There are several different evaluation strategies.

A programming language employs one or more evaluation
strategies.

A programming language may also be able to simulate
evaluation strategies that is does not directly support.

The three main types of evaluation strategies are:

1. Call by value.
2. Call by reference.
3. Call by name.

14

Call by Value

The most common evaluation strategy is call by value.
Call by value works as follows on p(a1, . . . , an):

1. The arguments a1, . . . , an are evaluated resulting in
values v1, . . . , vn.

2. The values of the parameters x1, . . . , xn of p are set to
the values v1, . . . , vn.

Call by value is used by both OCaml and C.
In OCaml, step 2 is done by binding the parameters to
the values.
In C, step 2 is done by copying the values to new memory
locations and then binding the parameters to these
memory locations.

I This is a costly operation if the values occupy a large
amount of space.

In OCaml and C, call by value is relaxed for boolean
expressions and conditions.

15

Call by Reference

The evaluation strategy call by reference works as follows:

1. The arguments a1, . . . , an are evaluated resulting in
values v1, . . . , vn.

2. The parameters x1, . . . , xn of p are bound to references
for the values v1, . . . , vn.

Call by reference is more space- and time-efficient than
C-style call by value, but widens the access to the values.

Call by reference is not directly supported in OCaml or C.

In functional programming languages like OCaml, call by
reference is used internally — so a parameter bound to a
mutable value v behaves as if it were bound to a
reference for v .

Call by reference can be simulated in OCaml by using
references and in C by using pointers.

16

Call by Name

The evaluation strategy call by name works as follows:

1. The arguments a1, . . . , an are not evaluated.
2. The arguments a1, . . . , an are directly substituted for the

parameters x1, . . . , xn in the body of p.

Call by name is used to implement:

I Lazy evaluation (or delayed evaluation).
I Macro expansion (for example, as in C).

17

Records in C

Records are called structures in C.

Structure type declaration:

typedef struct {
[const] t1 field-name1;

...
[const] tn field-namen;

} struct-type;

where const is an optional type qualifier that makes the
field immutable.

Constructor:

struct-type struct-name = {expr1, . . . ,exprn};
Selector:

struct-name.field-name;

Mutator:

struct-name.field-name = expr;
18

Arrays in C.

Constructor:

int a[5];
int b[5] = {10,20,30,40,50};

create arrays of type int[5] of length 5.

Selector:

a[index]

where index is 0, . . . , 4.

Mutator:

a[index] = expr;.

where index is 0, . . . , 4.

Note: An array in C is not a variable: it can not be
directly modified by assignment:

I a = b; gives an error.

19

Pointers and Arrays

Arrays are implemented in C like constant pointers that
point to a fixed amount of space.
Suppose

int a[5];
int * ip;
ip = a;

Then
ip == &a[0]
ip + 3 == &a[3]
*(ip + 3) == a[3]
ip[3] == a[3]

Since an array is accessed via a pointer, it is possible to
access memory outside of the array (called a buffer
overflow).
Buffer overflows are the cause of many insidious bugs and
dangerous security breaches.

20

Strings in C

A string in C is a array of elements of type char that end
with the null character \’0’.
Constructors:

"c1c2 · · · cn"
{c1, c2, . . . , cn, \’0’}

A variable of type char array can hold a string.

char x[] = "abc";

The C library with header <string.h> contains various
string processing functions.

21

