
CS 2SC3 and SE 2S03 Fall 2008

05 Dynamic Data Structures

William M. Farmer

Department of Computing and Software
McMaster University

16 November 2008

What are Dynamic Data Structures?

A static data structure is a data structure whose size is
fixed during run time.

I Overhead cost is low.
I Expansion cost is high.

A dynamic data structure is a data structure whose size
changes during run time.

I Overhead cost is high.
I Expansion cost is low.

2

Program Memory

A machine code program has four kinds of memory:

1. Processor registers.

2. Static memory.

3. The stack (also called the call stack or execution stack).

4. The heap.

3

Persistence

The persistence of an entity (e.g., a variable) is the period
of time the entity is available to a running program.

Examples:

I The persistence of a running function procedure begins
when it is called and ends when it returns a value.

I The persistence of a variable declared in a procedure
normally has the same persistence as the procedure.

I The persistence of a global variable is from when it is
first declared to the termination of the program.

4

Static Memory Allocation

Static memory allocation is done at compile time.

I Performed by the compiler.
I The size of static memory does not change during run

time.

Static memory includes:

I Program code.
I Data that needs to be available for the lifetime of the

program.
I Global constants.

There is no run time allocation overhead.

Data structures held in static memory persist for the
lifetime of the program.

Static memory is not deallocated during run time.

5

Automatic Memory Allocation

Automatic memory allocation is done at run time
whenever a procedure is called.

I A frame is pushed on the stack when the procedure is
called.

I The frame is popped from the stack when the procedure
finishes.

Stack memory includes:

I Return address.
I Local variables.

Allocation overhead is modest.

Data structures held in stack memory persist only for the
lifetime of the procedure call.

Stack memory is automatically deallocated when a
procedure call finishes.

6

Dynamic Memory Allocation

Dynamic memory allocation is done at run time when a
data structure is created in the heap.

The heap memory includes:

I Dynamic data structures.
I Data structures that need to persist longer than

procedure calls.

Allocation overhead is high.

Data structures held in heap memory persist until the
memory is deallocated.

In OCaml, heap memory is implicitly deallocated by
garbage collection.

In C, heap memory is explicitly deallocated.

7

Heap Memory Allocation and Deallocation in C

Heap memory is allocated using the operator malloc:

type * ptr = malloc(sizeof(type));

Heap memory is deallocated using the operator free:

free(ptr);

Problems:

1. Unneeded heap memory is not freed by the programmer
or the pointer to heap memory is lost (memory leak).

2. Heap memory is accessed after it is freed.

8

Linked Lists

A linked list is a dynamic data structure consisting of a
sequence of linked nodes that holds a list of elements.

Each node is a record of type t containing various data
fields and one or two references of type t:

1. A field named next that points to the “next” node.
2. A field named previous that points to the “previous”

node.

Note: The type t is self-referential.

A link list has four basic forms:

1. Singly linked (having one of the next and previous fields).
2. Doubly linked (having both of the next and previous

fields).
3. Singly linked in a circle.
4. Doubly linked in a circle.

9

Linked List Operators

Constructor: Starts the construction of a new linked list.

Node selector: A node is accessed sequentially by
following the links until the node is reached.

Node mutators:

I Node removal: A node is removed from the linked list.
I Node insertion. A new node is inserted into the linked

list.

10

Comparison of Linked Lists with Arrays

Linked lists are more space efficient than arrays.

I Arrays fill up; linked lists do not.
I Arrays may have empty cells; linked lists do not.
I Resizing an array is costly; resizing a linked list is not.

Access to an array element is faster than to linked list
elements.

I Arrays support random access.
I Linked lists support only sequential access.

Linked lists have higher space and time overhead than
arrays.

I Cells requires more space to hold node references.
I Removing and inserting elements takes more time.

11

Binary Trees

A binary tree is a dynamic data structure consisting of a
tree of linked nodes that holds a tree of elements.

Each node is a record of type t containing various data
fields and two references of type t:

1. A field named left that points to the “left” child node.
2. A field named right that points to the “right” child node.

Data can be stored at each node or at only the leaf nodes.

12

Sum Types in OCaml

A sum type represents a disjoint union of values.

I Sum types are also called union types and variant types.
I Enumerated types are a special case of sum types.

Sum type declaration:

type name =
Name1 [of t1]

| Name2 [of t2]
...

| Namen [of tn] ;;

The Namei are constructors that:

1. Construct values of the sum type.
2. Tag the values of the sum type to distinguish the

components of the corresponding disjoint union.
3. Select values of the sum type via pattern matching.

13

Summary of Types in OCaml

Types of Immutable Values

I Basic types: unit, bool, int, float, char.
I Function types: t1 -> t2.
I Product types: t1 * · · · * tn.
I List types: t list.
I Sum types: Name1 [of t1] | . . . | Namen [of tn].

Types of Mutable Values

I Reference types: t ref.
I Record types:

{[mutable] name1 : t1; . . . ; [mutable] namen : tn}.
I Array types: t array.
I String type: string.

14

Type Declarations in OCaml

(Recursive) type declarations:

type name = type expression ;;

Mutually recursive type declarations:

type name1 = type expression1

and name2 = type expression2
...

and namen = type expressionn ;;

Parameterized type declarations:

type ’a name = type expression ;;
type (’a1, . . . , ’an) name = type expression ;;

15

Pattern Matching in OCaml (1/3)

Pattern matching provides an easy way to access
components of complex data structures.

A pattern is an expression with zero or more free
(unbound) variables.

A pattern must be linear in the sense that each free
variable cannot occur more than once in the pattern.

Let p be a pattern containing the free variables x1, . . . , xn.

A value v matches p if there is a set of bindings for
x1, . . . , xn such the value of p under these bindings equals
v . Let us call this set of bindings the match bindings.

The wildcard pattern matches every possible value.

16

Pattern Matching in OCaml (2/3)

The following syntax is used to do pattern matching:

match expr with
|p1 -> expr1

...
|pn -> exprn

where the p1, . . . , pn are patterns of the same type as
expr. Note: the first | is optional.

A pattern matching expression is evaluated as follows:

1. expr is evaluated and then sequentially compared with
the patterns p1, . . . , pn until a match is found.

2. If pi is the first pattern that matches the value of expr,
then the value of expri under the corresponding match
bindings is returned.

3. If no match is found, the Match failure exception is
raised.

17

Pattern Matching in OCaml (3/3)

Pattern matching can be used to define a function by
cases.

The form

function p1 -> e1 | · · · | pn -> en

is equivalent to

function e -> match e with p1 -> e1 | · · · | pn -> en

Patterns can be named: p as name

Patterns can have conditions: p when cond

Value declarations can use pattern matching:

let (x,y,z) = (1,1.,true) ;;

18

