
CS 2SC3 and SE 2S03 Fall 2008

06 Advanced Procedures

William M. Farmer

Department of Computing and Software
McMaster University

19 November 2008



Higher-Order Procedures

A higher-order function is a function that either takes
functions as input or returns functions as output.

A higher-order procedure is a procedure that represents a
higher-order function.

Higher-order functions are directly represented in OCaml.

Higher-order functions are represented in C using function
pointers, i.e., pointers that point to the address of a
function.

Higher-order procedures are invaluable for building
complex procedures from simpler procedures.

2



Function Pointers in C

A function name is bound to the starting address in
memory of the code that implements the function.

A function pointer is a variable that holds the address of
a function.

Function pointers are used to indirectly store functions
and to pass functions to other functions as input and
output values.

The syntax for declaring a function pointer is:

t (*fun ptr)(t1 p1, . . . , tn pn);

Note: The parameter names p1, . . . , pn are optional.

The syntax for applying the function that a function
pointer references is:

(*fun ptr)(a1, . . . , an)

3



Polymorphic Procedures

A procedure is polymorphic if it can be applied to
different types.

In OCaml, polymorphic procedures are defined
automatically when input and output types are not fully
specified.

I The execution of polymorphic procedures in OCaml is
type safe.

In C, polymorphic procedures are defined using the
void * type.

I The void * acts as a universal type.
I The execution of polymorphic procedures in C is not

type safe.

The use of polymorphic procedures allows code to be
more generic, more powerful.

4



Recursion

Recursion is a method of defining something in terms of
itself.

I One of the most fundamental ideas of computing.
I An alternative to iteration (loops).
I Can make some programs easier to describe, write, and

prove correct.

Both procedures and data structures can be defined by
recursion.

A set of procedures or data structures can be defined by
mutual recursion.

The use of recursion requires care and understanding.

I Recursive definitions can be nonsensical (i.e.,
nonterminating).

I Sloppy use of recursion can lead to total confusion.
I Correctness is proved by induction.

5



Semantics of Recursive Procedures

A recursive procedure can be understood as:

1. Declarative definition: A definition of a function with an
infinite body.

2. Operational definition: A definition of a special-purpose
computer.

3. Fixed point definition: An implicit definition of a function
f that satisfies an equation of the form f = H(f ).

6



Implementation of Recursive Procedures

Recursive procedures are usually implemented using the
call stack.

I The stack contains one frame for each call of the
recursive procedure.

I The nesting depth of recursive calls does not need to be
calculated before execution.

If the nesting depth of recursive calls is infinite, the
procedure will run until the stack space is exhausted.

7



Quality Issues

Termination is shown using a well-founded ordering.

I For example, a strictly decreasing natural number value.

Correctness can be proved using induction.

Efficiency:

I In some cases, recursion can be highly inefficient in the
use of space (e.g., in standard implementations of C).

I In some cases, recursion can be executed in constant
space (e.g., with tail recursive procedures in Scheme or
OCaml).

8



Tail Recursion

A procedure is tail recursive if nothing is left to do after
each recursive call in the procedure body.

Tail recursive procedures can be made to execute in
constant space:

I In some programming languages, e.g., Scheme and
OCaml, the compiler ensures that tail recursive
procedures execute in constant space.

I In other programming languages, tail recursive
procedures can be redefined using iteration (which
executes in constant space).

Loops can be replaced with the use of tail recursion.

9


