CS 25C3 and SE 2503 Fall 2008

06 Advanced Procedures

William M. Farmer

Department of Computing and Software
McMaster University

19 November 2008

S



Higher-Order Procedures

@ A higher-order function is a function that either takes
functions as input or returns functions as output.

@ A higher-order procedure is a procedure that represents a
higher-order function.

@ Higher-order functions are directly represented in OCaml.

@ Higher-order functions are represented in C using function
pointers, i.e., pointers that point to the address of a
function.

@ Higher-order procedures are invaluable for building
complex procedures from simpler procedures.



Function Pointers in C

@ A function name is bound to the starting address in
memory of the code that implements the function.

@ A function pointer is a variable that holds the address of
a function.

@ Function pointers are used to indirectly store functions
and to pass functions to other functions as input and
output values.

@ The syntax for declaring a function pointer is:
t (xfun_ptr) (t1 p1,...,th Pn);

Note: The parameter names py, ..., p, are optional.

@ The syntax for applying the function that a function
pointer references is:

(xfun_ptr) (a1,...,an)



Polymorphic Procedures

A procedure is polymorphic if it can be applied to
different types.

In OCaml, polymorphic procedures are defined
automatically when input and output types are not fully
specified.

» The execution of polymorphic procedures in OCaml is

type safe.

In C, polymorphic procedures are defined using the
vold * type.

» The void * acts as a universal type.
» The execution of polymorphic procedures in C is not
type safe.

The use of polymorphic procedures allows code to be
more generic, more powerful.



Recursion

@ Recursion is a method of defining something in terms of
itself.

» One of the most fundamental ideas of computing.
» An alternative to iteration (loops).
» Can make some programs easier to describe, write, and

prove correct.

@ Both procedures and data structures can be defined by
recursion.

@ A set of procedures or data structures can be defined by
mutual recursion.

@ The use of recursion requires care and understanding.

» Recursive definitions can be nonsensical (i.e.,

nonterminating).
» Sloppy use of recursion can lead to total confusion.

» Correctness is proved by induction.



Semantics of Recursive Procedures

A recursive procedure can be understood as:

1.

Declarative definition: A definition of a function with an
infinite body.

. Operational definition: A definition of a special-purpose

computer.

. Fixed point definition: An implicit definition of a function

f that satisfies an equation of the form f = H(f).



Implementation of Recursive Procedures

@ Recursive procedures are usually implemented using the
call stack.

» The stack contains one frame for each call of the
recursive procedure.

» The nesting depth of recursive calls does not need to be
calculated before execution.

@ If the nesting depth of recursive calls is infinite, the
procedure will run until the stack space is exhausted.



Quality Issues

@ Termination is shown using a well-founded ordering.

» For example, a strictly decreasing natural number value.

@ Correctness can be proved using induction.
e Efficiency:

» |In some cases, recursion can be highly inefficient in the
use of space (e.g., in standard implementations of C).

» |In some cases, recursion can be executed in constant
space (e.g., with tail recursive procedures in Scheme or

OCaml).



Tail Recursion

@ A procedure is tail recursive if nothing is left to do after
each recursive call in the procedure body.

@ Tail recursive procedures can be made to execute In
constant space:

» |In some programming languages, e.g., Scheme and
OCaml, the compiler ensures that tail recursive
procedures execute in constant space.

» In other programming languages, tail recursive
procedures can be redefined using iteration (which
executes in constant space).

@ Loops can be replaced with the use of tail recursion.



