/* Rebecca Dreezer

November 7, 2008

Structures Explained */

#DEFINE LEN 10;

struct {

 int student_ID;

 char name[LEN+1];

} student1, student2;

struct {

 int student_ID;

 char name[LEN+1];

} employee1, employee2;

/* Each structure has a separate name space

 any names declared in a scope won't conflict with other names in a program */

/* Initializing Struct Variables */

struct {

 int student_ID;

 char name[LEN+1];

} student1 = {001, "student a"},

student2 = {002, "student b"};

/* May be initialized when it is declared.

Values in initializer must be in the same order as the members of the structure */

/* Accessing a member */

printf("Student number: %d\n", student1.student_ID);

printf("Student name: %s\n", student1.name);

/* Changing a value of a member */

student1.number++;

student2.number = 004;

student1 = student2;

/*the previous statement copies student2 to student1.

aka. all members of student1 will be assigned the values of the members of student2 */

/* Interesting to note:

You can't copy arrays the way you can copy structs.

BUT if you wanted to, you can create a "dummy" structure...

SO you can have:

struct { int arr[5]; } a1, a2;
a1 = a2; */

/* Problem with using struct variables:

If we initialize one struct for student1, and then want to initialize another struct for

student2 later, TECHNICALLY student1 and student2 wont have compatible types.

ALSO, since there isnt a name for their type, you cant really call it in a function.

To get around that we use

(a) structure tag - name used to identify a kind of structure

(b) typedef */

/*structure tag */

struct student {

 int student_ID;

 char name[LEN+1];

};

struct student s1 = {004, "student d"};

struct student s2;

s2 = s1;

/* OR */

struct student {

 int student_ID;

 char name[LEN+1];

} s1, s2;

/* typedef */

typedef struct {

 int student_ID;

 char name[LEN+1];

} Student;

Student s1, s2;

/* Nested Structures */

struct student_name {

 char first[LEN+1];

 char middle;

 char last[LEN+1];

};

struct student {

 struct student_name name;

 int student_ID;

} s1, s2;

/* accessing field in the name struct */

strcpy (s1.student_name.first, "student");

/* why could it be better to have a nested structure there?

- if we were making a function that printed the name,

then you would just need to send it the name struct (s1.student_name)

versus sending it three separate arguments */

/* Pointers and structs */

struct COORD {

 float x,y;

} pt;

struct COORD *pt_ptr;

pt_ptr = &pt; /* assigns pointer to pt */

/* the -> operator lets us access a member of the structure pointed to by a pointer. */

pt_ptr->x = 1.0;

pt_ptr->y = pt_ptr->y - 3.0;
