
 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-1/34

Comm unication
Explaining and Documenting Software

Three Types of Communication:

Oral Communication
• Usually face-to-face with discussion possibilities.

• Presenter can observe the audience and adjust to their reaction.

• Presenter can accommodate audience needs/wishes.

Written Text:
• Intended to stand on its own.

• Not interactive in any way.

• Cannot adjust to audience needs

• Writer must anticipate audience.

Visual Aids (Overheads, slides, ...)
• Intended to supplement oral presentation

• need not stand on its own

• helps the audience to follow your structure

• repeats the most important points

• can provide illustration

• allows you to go too fast.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-2/34

Types of Communication

Reference Documentation for Maintainers

Introductory Documentation for Maintainers

Reference User Documentation

Tutorial User Documentation

Overview User Documentation.

Comparative Reports

Investigatory Reports

Publicity Communication

Advertising

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-3/34

The Most Basic Rule for All
Know Your Audience

• Write down what you expect them to know.

• Write down what terms they know.

• Write down their purpose in listening or reading.

• Write down your purpose in communication.

• Write down what you want themto know afterwards
or what you want them to be able to do.

You must spend time on this.
• Find out wherethey learnedwhatyou expectthemto

know.

• Make sure that they do understand the vocabulary

• Get agreement from your customer.

Usethis “requirementsdocument”whenyou prepare
your communication.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-4/34

The Second Rule:

Design your communication’s structurebefore you
prepare the words.

Formulate the questions you are planning to answer.

Refine your “question outline” top down.

Show that answeringall low level questionswill
answer the question on the next level up.

When preparingmake sure that your audiencecan
follow you. If you are assumingthat they know
somethingit musteitherbe a prerequisiteor it must
be something you have already told them.

This is a programdesignproblem.You must know
thestartingstate,thedesiredendstate,andmakesure
that you have a sequenceof statechangesthat will
execute in the processor - your audience.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-5/34

Documentation Guidelines
Why design documentation is important.

Uses during development:
• Communication among designers, users,

programmers, etc.
• Training - makes personnel turnover less disruptive.
• Prevents duplication of effort - if reasonsfor design

decisions recorded, reduces need to rethink them later.
• Basis for design reviews.
• Qualityassurance- standardagainstwhichsoftwarecan

be judged.
Uses during maintenance:
• Training
• Reduces labour of evaluating feasibility of changes.
• Guides programmers as they find and correct errors.
• Repository of design information, which even the

original programmers often forget.
• Preservation of program conceptual integrity -

maintenance programmers have a way to check
consistency of proposed changes.Theexistence of
alternatives when something goes wrong

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-6/34

Common Pr oblems with Documentation
Why is it Har d to Use?

Difficult to understand- assumesreaderknows more
than he/she does.

Difficult to find answers to specific questions.

Difficult to maintain - gets out-of-date all too soon.

Wordy, repetitive, and boring.

• Confusing, inconsistent terminology
• People appreciate clear, concise termination.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-7/34

Remedy

View documentationas the most importantproduct
of design, not as a by-product of coding.

Design the documentation- objectives, contents,
organisation, format.

• To bea convenientformatfor designersto record
and exchange ideas.

• To serve as ready reference tools.

• To be maintained- controlled and kept up-to-
date.

• To explain reasonsfor decisionssince reasons
cannot be inferred from code.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-8/34

General Principles for Documentation Design

Determine objectives

• Who will need it?

• What should they already know?

• What should they be able to find out?

State questions before trying to answer them.

Separate concerns.

Documentation should consist of mutually
supportive formal and informal parts.

• Formal - precise, concise, unambiguous

• Informal - provides a guide to the formal

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-9/34

General Principles for Documentation Design

Warning:

If you are not careful, peoplewill dependon the
informal documentation and ignore the precise
documentation.

This leads to misunderstandings.

Keep the two complementary.

• Use English only for overviews, narratives, and
explanations.

• UseabstractPrograms(otherwiseknow asPDL
or coding specifications) for documenting
algorithms.

• Use mathematics to describe functions and
relations.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-10/34

When you are presenting lots of information:

Usethequestionnairemethod:Designforms,tables,
notation, templates.

Carefuldesignof forms, tables,andsimilar formal
document structures will assure:
• complete coverage rather than haphazard coverage

• a well structured logical organisation for the
information

• consistency in the information that is presentedand
the way that it is presented.

• Areas of incompleteness that are known.

• Ease of review.

When you discover that the form is not right:
• correct the form

• review all earlier work.

Do not make ad hoc variations from the forms.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-11/34

Do Not Confuse the Follo wing T ypes of
Documentation

1. Software Requirements Specification (e.g.,
Programs Performance Specification)

2. Overall Design Documentation

3. Module Interface Documentation

4. Module Internal Design Documentation

5. Program Design Documentation

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-12/34

Writing Do wn Requirements

The most costly errorsare thosemadeearly in the
process - they are the hardest to change.

Misunderstandingsaboutrequirementslead to early
mistakes. Those are costly mistakes.

Programmers need to be told what is needed.

They must also be told what is subject to change.

Requirements must be subject to review.

Safety reviews of software must be based on a
previously agreed statement of requirements.

Maintenance actions must be based on requirements.

None of thesethings is possibleunlesswe have a
written statement to work with.

Thatwritten statementmustbepreciseandcomplete.

Thefirst responsibilityof the“SoftwareEngineer”is
to obtain an accurateand complete statementof
requirements.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-13/34

How to document system requirements

The first step is to:

Identify monitored variables (m1, m2, •••, mn).

Identify controlled variables (c1, c2, •••, cp).

The primary monitoredvariablesare things outside
thesystemwhosevaluesshouldinfluencetheoutput
of the system. Examples:

• customer meter reading
• steam temperature
• time of day

The primary controlledvariablesare things outside
the systemwhosevaluesshould be constrainedor
controlled by the system. Examples:

• what the operator sees
• what appears on a bill
• the temperature of the water.

This is only thebeginning,but for many projectsyou
cannoteven find a completelist of thesevariables
and there is no agreement on what they are.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-14/34

Monitor ed and Controlled Variables Will Be
Added During The Design Process.

It is inevitable that the needfor additionalvariables
will be discovered as we get into detailed work.

Further, new monitored and control variables are
createdduring the design process.

The primary monitoredandcontrolledvariablesare
outside the system. Secondaryvariables may be
internal.

• Sometimeswe want to monitor the systemitself, i.e.
measurethings that did not exist before the system
was built.

• Sometimeswemayevenwantto control(adjust)parts
of the system.

As the design is developed, we may add these
monitored and controlled variables to the
requirements document.

It is essentialthatthedocumentbeupdatedasdesign
continues.Not keepingdocumentsup to datecosts
you more than it saves.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-15/34

A Mathematical Vie w of Requirements

The implementors need to know the following
relations:

Relation NAT:
• domain contains values ofmt, range contains values ofct,

• (mt, ct) is in NAT if and only if nature permits that behaviour.

This tell us what we need to know about the
environment.

Relation REQ:
• domain contains values ofmt, range contains values ofct,

• (mt, ct) is in REQif andonly if systemshouldpermitthatbehaviour.

This tells us how the new system is intended to
furtherrestrict what NAT(ure) allows to happen.

If we can describe these relations, we have our
system requirements written down.

Wecangetthe“scary” mathoutof thedocumentsby
using the right notation.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-16/34

How can we document system design?

it denotes the vector valued time function
(it1, it2, •••, itr) with one elementfor eachof the
input registers

ot denotes the vector valued time function
(ot

1, ot
2, •••, ot

q) with oneelementfor eachof the
output registers

Document the following relations
Relation IN:
• domain contains values ofmt, range contains values ofit

• (mt, it) is in IN if and only if input device permits that behaviour

It must be the case that
domain(IN)⊇ domain(NAT)

Relation OUT
• domain contains the possible values ofot

• range contains the possible values ofct

• (ot, ct) is in OUT if and only if output device permits that behaviour

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-17/34

When Can We Skip System Design?

Sometimesthe I/O devices are simple and we can
have simplerelationshipsbetweenthecontrolledand
output variablesas well as betweenthe monitored
and controlled variables.

In that case,we can use the systemsrequirements
document as a software requirements document.

Many applications have this property.

In some, we can cheat and mix the two.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-18/34

Documenting Module/Object Interfaces (1)

It is wise to design software as a set of objects.
• Each object is implementedby a module (a set of

programs)usinga datastructurethat is “hiddenfrom”
(neveruseddirectlyby) programsoutsidethemodule.

• Changing the state of the object, or getting
information aboutthe object’s state,is only doneby
invocations of programs from the module.

• Every object is a finite state machine.

• Theinput alphabetof anobjectis thesetof operations
one can perform upon an object.

• The outputalphabetof the object is the setof values
that can be returned by such operations.

The state representation of objects should be hidden.

Describing or specifying objects is very differ ent
fr om describing or specifying programs.

Hiding the statemeansthat we must discussevent
sequences, but it makes future changes easier.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-19/34

Interface Documentation: 12 Element Queue

(1) Syntax

ACCESS PROGRAMS

(2) Canonical representation

(rep =<)> ∧

(3) Trace Extension Functions1

ADD([rep],a)≡

REMOVE([rep]) ≡

FRONT([rep]) ≡

Program Name Value Arg#1
ADD <integer>

REMOVE

FRONT <integer>

1 We use “.” to denote sequence concatenation. [brackets] enclose implicit arguments to functions.

conditions new rep extension class
n = 12 rep %full%

n < 12 rep.a

conditions new rep extension class
rep = _ rep %empty%

rep≠ _
< >

conditions new rep
extension

class
Value re-
turned

rep = _ rep %empty%

rep≠ _ rep a1

ai[]i 1=
n

0 n 12≤ ≤()

ai[]i 2=
n

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-20/34

Documenting Internal Design

We need to document:

• The complete data structure.

• The interpretation of that data structure
(known as an abstraction function).

• The effect of each program
(program function or LD-relation)

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-21/34

Queue12: Implementation 1 - Pascal

(1) DATA STRUCTURE

CONSTANTS

TYPES

VARIABLES

Lexicon:

edge (R = F + 1)∨ (F = QSIZE-1)∧ (R = 0)
<qs> qds× 0..QSIZE-1× 0..QSIZE-1 × boolean

(2) ABSTRACTION FUNCTION

af: <qs> → <queue12>

af(DATA,F,R,FULL)

Access program functions will be found on page23

Constant Name Definition

QSIZE 12

Type Name Definition

<qds> array[0...QSIZE-1] ofinteger

TypeDefinition/Name Variables Initial Values

<qds> DATA “Don’t Care”

0..QSIZE-1 F, R “Don’t Care”

<boolean> FULL “Don’t Care”

(¬ edge ∨ FULL) ∧ (F ≥ R) (DATA[F]) (DATA[F −1]). …. (DATA[R])

(¬ edge ∨ FULL) ∧ (F < R) (DATA[F]). … (DATA[0]) (DATA[QSIZE-1]). …. (DATA[R])

edge ∧ ¬ FULL <>

df

df

df

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-22/34

Relational Pr ogram Descriptions and
Specifications

Usersneedto know therelationbetweenthestarting
values of variables and the final values of variables.

Usersneedto know the startingstatesfor which the
program is guaranteed to terminate.

We baseour work on Harlan Mills’ (“Cleanroom”)
program function, but

• Represent the function using tabular format.

• Deal properly with non-determinism.

• Carefully distinguish between relations as
specifications and relations as descriptions.

It is possibleto produceshort,readablespecifications
of programsandreview thembeforewriting theactu-
al code.

This forcesdesignersto think aboutissuesthat they
tend to overlook (such as error response).

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-23/34

Inter nal Design (continued)

(3) PROGRAM FUNCTIONS

gpf_ADD(a) NC(F)∧ ∀j (j ≠ R’) [NC(DATA[j])] ∧ NC(a)∧

pf_REMOVE NC(DATA,R) ∧

pf_FRONT NC(R,FULL, DATA, F)∧

pf_Name Arg#1 Value

pf_Q12INIT <qs> → <qs>

gpf_ADD <integer> <qs> × <integer> → <qs>

pf_REMOVE <qs> → <qs>

pf_FRONT <qs> → <qs> × <integer>

(‘R = 0) ∧ (‘R ≠ 0) ∧

‘edge ∧
 ¬ ‘edge

‘edge ∧
¬ ‘edge

‘FULL ¬ ‘FULL ‘FULL ¬ ‘FULL

DATA’[R’] = ‘DATA[‘R] a a ‘DATA[‘R] a a

R’ = ‘R QSIZE-1 QSIZE-1 ‘R ‘R − 1 ‘R − 1

FULL’ = ‘FULL false ‘F = QSIZE-2 ‘FULL false edge’

(¬ ‘edge ∨ ‘FULL) ∧
(‘edge ∧ ¬‘FULL)

(‘F = 0) (‘F > 0)

F’ = QSIZE-1 ‘F − 1 ‘F

FULL’ = false false ‘FULL

¬ ‘edge ∨ ‘FULL (‘edge ∧ ¬‘FULL)

return value = ‘DATA[‘F]

df

df

df

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-24/34

Imperfection in Documents

Oneexcusefor not preparingsuchdocumentsis that
we cannot get them right.

When engineerswork with physical productsthey
must use imperfect implementationsof abstract
specifications. Exactness is often impossible.

With software, imperfectionis not impossiblebut it
may be convenient and acceptable.

The imperfectionsmustbe “bounded”andexplicitly
limited in their applicability.

For example, we may ignore the limits on
representationsof numbersbecausewe only work
with a limited range of numbers.

It is important to include this in the specification.

No new mathematicsis neededfor this. Implication
does the job.

The use of mathematicsin engineeringdoes not
imply a belief in perfection.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-25/34

A valuable Special Case:
Systems Characterised by Modes and Current

Values.

For many systems,only a little of the pasthistory is
relevant.

This canoftenbesummarisedby identifying “modes
of operation”.

Therewill often by a small finite numberof mode
classeseach with a small finite number of mode
states.

The current mode in eachclasscan be definedby
transition tables.

The controlled values are then a function of the
current mode and the current inputs.

For this classof systems,we can build monitoring
test systems.

We canuseothersummariesof thepasthistory, such
as average values, too.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-26/34

Modes And Their Use

Understandingthe modes can make a complex
system seem simple.

Modes are classes of states:
• There are too many states to deal with directly.
• The actual states are implementation dependent.
• Modes characterise the history of the system.
• The purposeof modesis to simplify the function

descriptions. Choose them accordingly.

There can be several classes of modes.

Therecan be interactions(excludedcombinations).
These should be minimised!

Mode transitions are caused by events.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-27/34

Modes can be defined by transition tables

Assumption:
weightonwheels,andwetaredetectableconditions.

Mode tables are often the best way to explain a
confusing system to a user.

They are a divide and conquer technique
• Separate the mode transition rules from other

behaviour.

• Deal with the modes one at a time.

 Mode Transition Table

Airplane ATV Submarine

Airplane
@T(weight
on wheels)

@T(wet)

ATV

@F(weight
on wheels)
when ¬ wet

@T(wet)

Submarine

@F(wet)
when ¬
(weight on
wheels)

@F(wet)
when
(weight on
wheels)

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-28/34

Two Views of Modes

Modes are classes of event histories.
• EachMode Classcorrespondsto a partitioningof the

set of event histories.

• EachMode in a modeclassis oneof thepartitionsof
that partitioning.

Modes are classes of system states
• EachMode Classcorrespondsto a partitioningof the

set of system states.

• EachMode in a modeclassis oneof thepartitionsof
that partitioning.

In a well designeddeterministicsystemtheseare
equivalent black box and clear box views.

One of the most popular CASE tools “Statemate”
supports this work.

Statemate’s semantics is too complex.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-29/34

Displays

Whenyouexplainor documentcode,usetheconcept
of a display.

The top part of eachdisplay is the specificationfor
the program in the middle.

Theprogramin themiddleis keptsmallby removing
sections,creatinga display for them,and including
their specification in the bottom part.

The bottom part containsa specificationof these
invoked programs.

To checka displaydeterminethe descriptionof the
program in the middle, and see if it satisfiesthe
specification at the top. In doing this, use the
specifications of the invoked programs, not their text.

To check a set of displays, make sure that every
specificationat thebottomof onedisplayis at thetop
of another. The exceptions:

• standard programs
• primitive programs

Displays can be formal or informal.

Completeness can be checked mechanically.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-30/34

Essential Point: Divide and Conquer

The initial decompositionis essential.Attempts to
simply scrutinise the program fail.

Trying to read the program the way a computer
would is much less effective. Logically connected
parts may be far apart.

The useof tablesis essential.It breaksthingsdown
into simple cases so that

• We can be sure that all cases are covered

• Each case is straightforward

We consider all variables, but one at a time.

We consider all cases, one at a time.

We cantake “breaks”,go homeandsleep,even take
holidays, without losing our place.

Using displaysand tabular summariesis far more
work than English paraphrasing,but it imposesa
discipline that helps.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-31/34

Using Information Theory to Impr ove Your
Communication.

The information in a statementis related to its
probability.
• Today I saw Dr. Taylor wearing a tie.

• Today I saw Dr. Parnas wearing a tie.

If everyoneagreeswith a statementit containsno
useful information.
• Canadian Politician: “We will listen to Canadians.”

• “The class of finite state machines is large and varied”

Use the negation test:
• Considervariousnegationsof a statementand ask if

anyone would say them.

• If nobody would say the negation reconsiderthe
statement.

Ask what you were really trying to say.
• The Liberals do not listen to Canadians.

• This thesis is about the design of finite state machines.

These translationsdo pass the negation test and
clearly state what you want to state.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-32/34

Take Documentation Seriously
Design Documentation Reviews and
Configuration Control Procedures

Design reviews: What questionsshould reviewers
ask themselves to determineif documentmeetsits
objectives?

Configuration control procedures:

• How are changes reported?

• Who decides whether to make them?

• Who reviews them?

• How are updates distributed? To whom?

• What tools are needed? - word processing
support invaluable.

• Look at configurationmanagementsystemsand
versioning systems.

• Keep document versions and code versions
aligned.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-33/34

Process Documentation

In Engineering,especially with complex systems,
processes must be defined and followed.

Youwon’t follow it properlyunlessit is documented.

You may have to prove that it is documented.

You needprecisemilestonedefinitions - not just a
few brief words.
• Under time pressure people take short-cuts.

• People often do not know what needs to be done.

• You must be able to prove that you are done.

Example: Y2K inspection
• inspect all programs

• check for key words

• make sure there are no dates being processed.

The above are all inadequate.

You can do them well or do them badly.

The best approach is to define work products.
• Define the required content of work products.

• Describe how work products will be tested or otherwise verified.

 McMaster Univer sity

15/9/99

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme

“connecting theory with practice”

communication.slides/-34/34

Using Abstraction

Distinguishbetweenwhat is relevant to your reader/
listener and what is not.

Defineabstractionsthatallow youto focusonwhatis
relevant.

Explain the abstractions.

Finally, give the information.

Examples:
• Explainthemodesof a device, thengive thetransition

rules.

• Introduce a set of lists, then describe the content.

• Introducetheclassesof objects,thendefinetheeffects
of commands.

