= McMaster Univer sity =

Comm unication
Explaining and Documenting Software

Three ypes of Communication:

Oral Communication

o Usually face-to-ace with discussion possibilities.
 Presenter can obserthe audience and adjust to their reaction.
 Presenter can accommodate audience needs/wishes.

Written Text:

* Intended to stand on itsvo.

* Not interactve in ary way.
 Cannot adjust to audience needs
« Writer must anticipate audience.

Visual Aids (Oerheads, slides, ...)

* Intended to supplement oral presentation
 need not stand on itsvo

* helps the audience to folloyour structure
* repeats the most important points

« can prwoide illustration

« allows you to go toodst.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-1/34 15/9/99

= McMaster Univer sity =

Types of Communication

Reference Documentation for Maintainers
Introductory Documentation for Maintainers
Reference User Documentation

Tutorial User Documentation

Overview User Documentation.

Comparatre Reports

Investicatory Reports

Publicity Communication

Advertising

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-2/34 15/9/99

= McMaster Univer sity =

The Most Basic Rule ér All
Know Your Audience

e Write dovn what you gpect them to knw.
 Write dovn what terms theknow.

e Write down their purpose in listening or reading.
e Write davn your purpose in communication.

e Write down what you wantthemto know afterwards
or what you vant them to be able to do.

You must spend time on this.

* Find out wherethey learnedwhatyou expectthemto
Know.

 Make sure that thedo understand theocalulary
« (Get agreement from your customer

Usethis “requirementgdocument’whenyou prepare
your communication.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-3/34 15/9/99

= McMaster Univer sity =

The Second Rule:

Design your communicatiors structurebefore you
prepare the ords.

Formulate the questions you are planning to answer
Refine your “question outline” top da.

Shav that answeringall low level questionswill
answer the question on thexh&evel up.

When preparingmake sure that your audiencecan
follow you. If you are assumingthat they know
somethingt musteitherbe a prerequisiteor it must
be something you ka already told them.

This is a programdesignproblem. You must know
thestartingstate the desiredendstate andmalke sure
that you have a sequencef statechangeghat will
execute in the processor - your audience.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-4/34 15/9/99

= McMaster Univer sity =

Documentation Guidelines

Why design documentation is important.

Uses during deslopment:

« Communication among designers, users,

programmers, etc.

Training - malkes personnel turnver less disrupte.
Prevents duplication of effort - if reasonsfor design

decisions recorded, reduces need to rethink them later

Basis for design xaews.

Quality assurance standardagainstwhich softwarecan

be judged.

Uses during maintenance:

Training

Reduces labour ofvaluating feasibility of changes.
Guides programmers as thiend and correct errors.
Repository of design information, which even the

original programmers often fpet.

Preseration of program conceptual integrity
maintenance programmers have a way to check
consisteng of proposed changes.Theexistence of

alternatves when something goes wrong

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-5/34

15/9/99

= McMaster Univer sity =

Common Pr oblems with Documentation
Why is it Har d to Use?

Difficult to understand assumeseaderknows more
than he/she does.

Difficult to find answers to specific questions.
Difficult to maintain - gets out-of-date all too soon.
Wordy, repetitve, and boring.

e Confusing, inconsistent terminology
* People appreciate cle@oncise termination.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-6/34 15/9/99

= McMaster Univer sity =

Remedy

View documentatioras the mostimportant product
of design, not as a by-product of coding.

Design the documentation- objectves, contents
organisation, format.

e To beacornvenientformatfor designergo record
and &change ideas.

* To senre as ready reference tools.

 To be maintained- controlled and kept up-to-
date.

 To explain reasonsfor decisionssince reasons
cannot be inferred from code.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-7/34 15/9/99

= McMaster Univer sity =

General Principles br Documentation Design

Determine objecties
e \Who will need it?

 What should thealready kna/?
« What should thgbe able to find out?

State questions before trying to answer them.
Separate concerns.

Documentation should consist of mutually
supportve formal and informal parts.

* Formal - precise, concise, unambiguous
 Informal - pravides a guide to the formal

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-8/34 15/9/99

= McMaster Univer sity =

General Principles br Documentation Design

Warning:

If you are not careful, peoplewill dependon the
iInformal documentationand ignore the precise
documentation.

This leads to misunderstandings.

Keep the tw complementary

« Use Englishonly for overviews, narratves, and
explanations.

« Use abstractProgramgotherwiseknow as PDL
or coding specifications) for documenting
algorithms.

e Use mathematicsto describe functions and
relations.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-9/34 15/9/99

= McMaster Univer sity =

When you are presenting lots of inbrmation:

Usethequestionnairenethod:Designforms,tables,
notation, templates.

Carefuldesignof forms, tables,and similar formal
document structures will assure:

 complete coerage rather than haphazardemge

« a well structured logical organisation for the
Information

e consisteng in the informationthat is presentecand
the way that it is presented.

 Areas of incompleteness that are wmno
 Ease of reiew.

When you disceer that the form is not right:
e correct the form

e review all earlier vork.

Do not mak ad hoc variations from the forms.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-10/34 15/9/99

= McMaster Univer sity =

Do Not Confuse the Follo wing T ypes of
Documentation

1. Software Requirements Specification (e.g.,
Programs Performance Specification)

Overall Design Documentation
Module Interface Documentation

Module Internal Design Documentation

a bk~ w0 D

Program Design Documentation

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-11/34 15/9/99

= McMaster Univer sity =

Writing Do wn Requirements

The most costly errors are thosemadeearly in the
process - theare the hardest to change.

Misunderstandingaboutrequirementdeadto early
mistales. Those are costly mistk

Programmers need to be told what is needed.
They must also be told what is subject to change
Requirements must be subject toiea.

Safety reviews of software must be basedon a
previously agreed statement of requirements.

Maintenance actions must be based on requirem

None of thesethings is possibleunlesswe have a
written statement to ek with.

Thatwritten statemenmustbepreciseandcomplete.

Thefirst responsibilityof the “Software Engineer”is
to obtain an accurateand complete statementof
requirements.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-12/34 15/9/99

ents

= McMaster Univer sity =

How to document system requirements

The first step is to:
|dentify monitored ariables (M, my, ee°, m,).

Identify controlled ariables (g, ¢, ***,).

The primary monitoredvariablesare things outside
the systemwhosevaluesshouldinfluencethe output
of the system. Examples:

e customer meter reading
e Steam temperature
 time of day

The primary controlled variablesare things outside
the systemwhose values should be constrainedor
controlled by the system. Examples:

« what the operator sees
« what appears on a bill
* the temperature of theater

Thisis only the beginning, but for mary projectsyou
cannoteven find a completelist of thesevariables
and there is no agreement on whaythee.

~

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-13/34 15/9/99

= McMaster Univer sity =

Monitor ed and Controlled Variables Will Be
Added During The Design Ppcess.

It IS Inevitable that the needfor additionalvariables
will be discavered as we get into detaileak.

Further new monitored and control variables are
createdduring the design process.

The primary monitoredand controlledvariablesare
outside the system. Secondaryvariables may be
internal.

e Sometimesve wantto monitor the systemitself, i.e.
measurethings that did not exist before the system
was huilt.

e Sometimesve mayevenwantto control(adjust)parts
of the system.

As the design is developed, we may add these
monitored and controlled variables to the
requirements document.

It Is essentiathatthe documenbe updatecasdesign
continues.Not keepingdocumentsup to date costs
you more than it sees.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-14/34 15/9/99

= McMaster Univer sity =

A Mathematical Vie w of Requirements

The implementors need to know the following
relations:

Relation M\T:

« domain containsalues ofm', range containsalues ofc!,
« (M}, c) is in NAT if and only if nature permits that betiaur.

This tell us what we need to know about the
environment.

Relation REQ:

« domain containsalues ofm!, range containsalues ofc!,

. (mt, (_:t) isin REQIif andonly if systemshouldpermitthatbehaiour.

This tells us how the newv systemis intendedto
furtherrestrictwhat NAT(ure) allavs to happen.

If we can describethese relations, we have our
system requirements writtenwlo.

We cangetthe“scary” mathout of thedocumentdy
using the right notation.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-15/34 15/9/99

= McMaster Univer sity =

How can we document system design?

it denotes theactor \alued time function
(ity, i, *, i) with one elementfor eachof the
Input registers

ol denotes theactor \alued time function
(0'1, 0y, =, 0'y) with oneelementfor eachof the
output rgisters

Document the bllowing relations

Relation IN:
« domain containsalues ofm', range containsalues ofi'

« (m',iYis in INif and only ifinput device permits that bekiur

It must be the case that
domain(IN)J domain(MT)

Relation QUT

« domain contains the possiblalves ofo!

« range contains the possiblalwes ofc!
e (0", d)is in OUT if and only if output déce permits that bek@ur

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-16/34 15/9/99

= McMaster Univer sity =

When Can We Skip System Design?

Sometimesthe I/O devices are simple and we can
have simplerelationshipdetweerthe controlledand
output variablesas well as betweenthe monitorec
and controlled ariables.

In that case,we can use the systemsrequirements
document as a sofawe requirements document.

Many applications hae this property

In some, we can cheat and mix theiw

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-17/34 15/9/99

= McMaster Univer sity =

It is wise to design softare as a set of objects.

The state representation of objects should be hid
Describing or specifying objects is very differ ent

Documenting Module/Object Interfaces (1)

Each object is implementedby a module (a set of
programsusinga datastructurethatis “hiddenfrom”
(never useddirectly by) programsutsidethe module.

Changing the state of the object, or getting
Information aboutthe objects state,is only doneby
Invocations of programs from the module.

Every object is a finite state machine.

Theinputalphabebf anobjectis the setof operations
one can perform upon an object.

The outputalphabetof the objectis the setof values
that can be returned by such operations.

from descrlblnq or soecn‘vmq pograms.

Hiding the state meansthat we must discussevent
sequences,ub it males future changes easier

VJ

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-18/34 15/9/99

den

McMaster Univer sity =

Interface Documentation: 12 Element Queue

(1) Syntax
ACCESS PROGRAMS
Program Name Value Arg#l
ADD <integer>
REMOVE
FRONT <integer>
(2) Canonical representation
(rep=<[a];_,)> 0 (0sn<12)
(3) Trace Extension Functions
ADD([rep],a)=
conditions new re extension clas$
n=12 rep %full%
n<12 rep.a
REMOVE([rep]) =
conditions new re extension class
rep = _ rep %empty%
rep# _ <[ai]in:2>
FRONT([rep]) =
» extension Value re-
conditions new re
class turned
rep = _ rep %empty%
rep¢ _ rep q

1 We use “ to denote sequence concatenation. [betelkenclose implicit guments to functions.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-19/34

15/9/99

= McMaster Univer sity =

Documenting Internal Design

We need to document:
 The complete data structure.

e The interpretation of that data structure
(known as an abstraction function).

 The efect of each program
(program function or LD-relation)

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-20/34 15/9/99

= McMaster Univer sity =

Queuel?2: Implementation 1 - Ascal

(1) DATA STRUCTURE

CONSTANTS
Constant Name Definition
QSIZE 12
TYPES
Type Name Definition
<qds> array[0...QSIZE-1] ofntege
VARIABLES
TypeDefinition/Name| Variables Initial Values
<qds> DATA “Don’t Care”
0..QSIZE-1 F,R “Don’t Care”
<boolean> FULL “Don’t Care”
Lexicon:

edge (R = F + 1)0(F = QSIZE-1)J(R = 0)
<qs> ¢ qdsx 0..QSIZE-1x 0..QSIZE-1x boolean

(2) ABSTRACTION FUNCTION

af: <gs>- <queuel2>

af(DATA,F,R,FULL)

(- edge OFULL) O(F=R) (DATA[F]) (DATA[F -1]). (DATA[R])
(- edge OFULL) O(F<R) (DATA[F]). ... (DATA[Q]) (DATA[QSIZE-1]). (DATA[R])
edge 0- FULL <>

Access pogram functions will be found on page23

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-21/34 15/9/99

= McMaster Univer sity =

Relational Pr ogram Descriptions and
Specifications

Usersneedto know therelationbetweenthe starting
values of ariables and the finaklues of ariables.

Usersneedto know the startingstatesfor which the
program is guaranteed to terminate.

We baseour work on Harlan Mills’ (“*Cleanroom”)
program function, wt

e Represent the function using tddr format.
» Deal properly with non-determinism.

o Carefully distinguish between relations as
specifications and relations as descriptions.

It is possibleto produceshort,readablespecification:
of programsandreview thembeforewriting theactu-
al code.

This forcesdesignerdo think aboutissuesthat they
tend to @erlook (such as error response).

~

D

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-22/34 15/9/99

McMaster Univer sity

Inter nal Design (continued)

(3) PROGRAM FUNCTIONS

pf_Name Arg#l | Value

pf_Q12INIT <gs> - <qgs>

gpf_ADD <integer> | <qs>x <integer> — <qs>

pf_ REMOVE <gs> — <Qgs>

pf FRONT <gs> — <gs>x <integer>

gpf_ADD(a) ¢ NC(F)O0j (j # R") [NC(DATA(])] ONC(a)O

(R=0)0O (Rz0)0O
‘edge O ‘edge O
- ‘edge - ‘edge
‘FULL - ‘FULL ‘FULL - ‘FULL
DATA'[R] =| ‘DATA[R] a a ‘DATA['R] a a
R’ = ‘R QSIZE-1 QSIZE-1 ‘R ‘R-1 ‘R-1
FULL = ‘FULL false ‘F = QSIZE-2 ‘FULL false edge’

pf_REMOVE ¢ NC(DATA,R) O

(~ ‘edge O'FULL) O

(‘edge O="'FULL)

(‘F=0) (‘F>0)
F= QSIZE-1 ‘F-1 ‘F
FULL' = false false ‘FULL
pf_FRONT ¢ NC(R,FULL, DATA, F)O
- ‘edge O ‘FULL (‘edge 0-‘FULL)
return value = ‘DATA['F]

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-23/34

15/9/99

= McMaster Univer sity =

Imperfection in Documents

Oneexcusefor not preparingsuchdocumentss that
we cannot get them right.

When engineerswork with physical productsthey
must use imperfect implementationsof abstrac
specifications. Exactness is often impossible.

With software, imperfectionis not impossiblebut it
may be comenient and acceptable.

Theimperfectionsamustbe “bounded”andexplicitly
limited in their applicability

For example, we may ignore the Ilimits on
representation®f numbersbecausewe only work
with a limited range of numbers.

It is important to include this in the specification.

No new mathematicss neededor this. Implication
does the job

The use of mathematicsin engineeringdoes not
Imply a belief in perfection.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-24/34 15/9/99

= McMaster Univer sity =

A valuable Special Case:
Systems Characterised by Modes and Cuent
Values.

For mary systemspnly a little of the pasthistoryis
relevant.

This canoftenbe summarisedy identifying “modes
of operation”.

Therewill often by a small finite numberof mode
classeseach with a small finite nhumber of mode
states.

The currentmode in eachclasscan be definedby
transition tables.

The controlled values are then a function of the
current mode and the current inputs.

For this classof systemswe can build monitoring
test systems.

We canuseothersummarie®f the pasthistory, such
as &erage alues, too.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-25/34 15/9/99

= McMaster Univer sity =

Modes And Their Use

Understandingthe modes can make a comple
system seem simple.

Modes are classes of states:

 There are too manstates to deal with directly
* The actual states are implementation dependent.
 Modes characterise the history of the system.

* The purposeof modesis to simplify the function
descriptions. Choose them accordingly

There can be seral classes of modes.

There can be interactions(excluded combinations).
These should be minimised!

Mode transitions are caused hxents.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-26/34 15/9/99

= McMaster Univer sity =

Modes can be defined by transition tables

Mode Transition Table

Airplane ATV Submarine
Airplane @T(weight | @T(wet)
on wheels)
@F(weight @T(wet)
ATV on wheels)
when = wet
@F(wet) @F(wet)
Submarine Wh—en - Wh—en
(weight on | (weight on
wheels) wheels)
Assumption:

weightonwheels,andwet aredetectableonditions.

Mode tables are often the best way to explain a
confusing system to a user

They are a dride and conguer technique

o Separate the mode transition rules from other
behaiour.

e Deal with the modes one at a time.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-27/34 15/9/99

= McMaster Univer sity =

Two Views of Modes

Modes are classes ofant histories.

« EachMode Classcorrespondso a partitioningof the
set of @ent histories.

« EachModein a modeclassis oneof the partitionsof
that partitioning.
Modes are classes of system states

« EachMode Classcorresponds$o a partitioningof the
set of system states.

« EachModein a modeclassis oneof the partitionsof
that partitioning.

In a well designeddeterministicsystemtheseare
equwvalent black box and clear box wis.

One of the most popular CASE tools “Statemate’
supports this wark.

Statemates semantics is too compile

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-28/34 15/9/99

= McMaster Univer sity =

Displays

Whenyou explain or documentode,usetheconcept
of a display

The top part of eachdisplayis the specificationfor
the program in the middle.

Theprogramin the middleis keptsmallby removing
sections,creatinga display for them, and including
their specification in the bottom part.

The bottom part containsa specificationof these
iInvoked programs.

To checka display determinethe descriptionof the
programin the middle, and seeif it satisfiesthe
specification at the top. In doing this, use the
specifications of the woked programs, not theirxe

To check a set of displays, make sure that every
specificatiomtthe bottomof onedisplayis atthetop
of anotherThe eceptions:

e standard programs

e primitive programs
Displays can be formal or informal.
Completeness can be chedkmechanically

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-29/34 15/9/99

= McMaster Univer sity =

Essential Bint. Divide and Conquer

The initial decompositionis essential Attempts to
simply scrutinise the programaif.

Trying to read the program the way a computer
would is much less effective. Logically connectec
parts may bedr apart.

The useof tablesis essentiallt breaksthings down
Into simple cases so that

 We can be sure that all cases arnsced
« Each case is straightfoand

We consider all ariables, bt one at a time.
We consider all cases, one at a time.

We cantake “breaks”, go homeandsleep,eventake
holidays, without losing our place.

Using displays and talular summariesis far more
work than English paraphrasingput it imposesa
discipline that helps.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-30/34 15/9/99

= McMaster Univer sity =

Using Information Theory to Impr ove Your
Communication.

The information in a statementis related to its
probability:

« Today | sav Dr. Taylor wearing a tie.

« Today | sav Dr. Parnas wearing a tie.

If everyoneagreeswith a statementt containsno
useful information.

« Canadian Politician: “\& will listen to Canadiaris.
 “The class of finite state machines igmand aried”

Use the ngation test:

« Considervariousnegationsof a statement&and ask if
anyone would say them.

 If nobody would say the negation reconsiderthe
statement.

Ask what you were really trying to say
e The Liberals do not listen to Canadians.

 This thesis is about the design of finite state machines.

These translationsdo passthe negation test and
clearly state what youant to state.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-31/34 15/9/99

= McMaster Univer sity =

Take Documentation Seriously
Design Documentation Reiews and
Configuration Control Procedures

Design reviews: What questionsshould reviewers
ask themseles to determineif documentmeetsits
objectves?

Configuration control procedures:
 How are changes reported?
 Who decides whether to makhem?
* Who reviews them?
How are updates distuibed? ® whom?

support ivaluable.

Look at configurationmanagemensystemsand
versioning systems.

aligned.

Keep document versions and code versions

What tools are needed?- word processing

)

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-32/34 15/9/99

= McMaster Univer sity =

Process Documentation

In Engineering,especially with complex systems
processes must be defined and feéd.

Youwon't follow it properlyunlessit is documented.

You may hae to praove that it is documented.

You needprecisemilestonedefinitions - not just a
few brief words.

 Under time pressure people ¢akhort-cuts.
 People often do not kmowhat needs to be done.
 You must be able to pre that you are done.

Example: Y2K inspection

* inspect all programs
 check for ley words
« make sure there are no dates being processed.

The abwoe are all inadequate.
You can do them well or do them badly

The best approach is to definenw products.
« Define the required content obvk products.

o Describe har work products will be tested or otherwiserified.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-33/34 15/9/99

= McMaster Univer sity =

Using Abstraction

—~——

Distinguishbetweenwhatis relevantto your reader
listener and what is not.

Defineabstractionshatallow youto focusonwhatis
relevant.

Explain the abstractions.

Finally, give the information.

Examples:

« Explainthemodesof adevice,thengive thetransition
rules.

 Introduce a set of lists, then describe the content.

* Introducetheclasse®f objectsthendefinetheeffects
of commands.

DEPARTMENT OF COMPUTING AND SOFTWARE
Software Engineering Pr ogramme
“connecting theory with practice”

communication.slides/-34/34 15/9/99

