

Core Router Architecture

- Pool of internet routers are divided into **core routers** and **noncore routers**
 - Motivated by the ARPANET which was a single WAN
 - Works well when the internet has a single backbone
- Provides optimal routes for all possible destinations
 - Core routers do not use default routes
 - Every assigned class network address must be advertised to the core system
 - A noncore router sends all nonlocal traffic to the core router at its site
 - Core routers communicate with themselves to preserve consistency
- Core router architecture is impractical today because:
 - The Internet is no longer built around one backbone
 - It is not possible to have a core router at each site
 - Core router architecture does not scale up very well

11. Routing Protocols

Instructor: W. M. Farmer

Revised: 4 April 2002

1

3

Routing Management Goals

- Packets can get from any source to any destination
- Packets take the shortest route
- Routing information is automatically distributed
- Routing tables are automatically initialized and updated
- Many routers route with partial information about destinations by using default routes
 - Tables are smaller and routing is more efficient
 - Management can be performed locally
 - Routing tables may be inconsistent with each other

Peer Backbone Architecture

- **Peer backbone networks** have several connections with each other
 - Motivated by connection of the NSFNET backbone to the ARPANET backbone
- The system is difficult to implement because:
 - Packets cannot simply be routed according to the network portion of their destination
 - Peers must keep their routes consistent with each other
 - Defaults routes from one peer to another can create routing loops

2

4

SE 4C03 Winter 2002

Vector Distance Routing (1)

- Each router keeps a list of route records having the following fields:
 - The destination class network (i.e., the **vector**)
 - The number of hops to the destination (i.e., the **distance**)
 - The route (either **direct** or the name of a **router**)
- Assumption: Measuring distance as number of hops is a good measure of the time cost of a route
- When a router boots, the list is initialized to just the routes for the class networks that are directly connected to the router
- Each router sends a copy of its list to all other routers that are directly connected to it

5

Vector Distance Routing (2)

- Suppose that R_1 and R_2 are directly connected routers
 - If R_1 has a route record (N, D, R) for the class network N but R_2 does not, R_2 will add the record $(N, D+1, R_1)$ to its list
 - If R_1 and R_2 have route records (N, D_1, R'_1) and (N, D_2, R'_2) , respectively, with $D_1 + 1 < D_2$, then R_2 will update its record to $(N, D_1 + 1, R_1)$
 - If R_1 and R_2 have route records (N, D_1, R) and (N, D_2, R_1) , respectively, with $D_1 + 1 \neq D_2$, then R_2 will update its record to $(N, D_1 + 1, R_1)$
 - Echo request
 - Echo reply

7

Gateway-to-Gateway Protocol (GGP)

- Now defunct vector-distance protocol used for sharing routing information among core routers
- GGP messages were encapsulated in IP datagrams
- Kinds of GGP messages:
 - Routing update message
 - Positive acknowledgement to routing update (update acceptable)
 - Negative acknowledgement to routing update (error detected)
 - Echo request
 - Echo reply

8

Link-State Routing (1) (Shortest Path First (SPF) Routing)

- Each router keeps a graph of the topology of the internet
 - A node represents a router
 - An edge represents a network
- The routers work to keep the graphs up to date
 - Each router periodically checks to see if its neighbors are up or down
 - Each router periodically broadcasts a message that contains the state of each of its links
 - Each router uses the link-state broadcasts it receives to update its internet topology graph
- Core routers need to know about “hidden” networks

9

Link-State Routing (2)

- Whenever the graph changes, a router uses the **Dijkstra shortest path algorithm** to compute the shortest route to each destination
- Advantages over vector-distance routing
 - Each router independently computes the shortest routes from the same information
 - It is easy to fix mistakes because link-state information is not modified as it is propagated
 - The size of link-state messages do not grow as the internet grows

11

Problems with Core Router System

- It is impractical for the group of core routers to include more than a small portion of the internet routers
- Noncore routers need to know core router routes to avoid “extra hops”

- An internet is composed of several **autonomous systems** each composed of a collection of routers and networks
- Each autonomous system chooses its own internal routing architecture
 - An **interior gateway protocol (IGP)** is used to distribute routing information within an autonomous system
- One or more routers in an autonomous system advertises local routing information to other autonomous systems
 - An **exterior gateway protocol (EGP)** is used to distribute routing information between two autonomous systems

12

10

Border Gateway Protocol (BGP)

- BGP is the EGP currently used in the Internet and most other TCP/IP internets
 - Each autonomous system has at least one designated **border gateway** that speaks on behalf of the autonomous system
 - Border gateways exchange reachability information (but not optimal routes)
- Attributes of BGP:
 - Transport is via TCP and thus is reliable
 - Local routing policy can be supported
 - Updates are usually incremental
 - A receiver can authenticate the sender
 - Subnet addressing is supported and so, for example, related destinations can be aggregated

13

BGP Message Types

1. OPEN: initializes communication
2. UPDATE: withdraws unreachable destinations and advertises new destinations
 - Each advertised destination can include:
 - The next hop to the destination
 - The path of autonomous systems to the destination
 - The source of the advertisement
 - Each destination is expressed as a compressed mask-address pair
3. NOTIFICATION: reports an error
4. KEEPALIVE: tests network connectivity
 - KEEPALIVE messages have minimum size (they contain only a BGP header)

14

Routing Information Protocol (RIP) (1)

- An IGP protocol for vector-distance routing
 - Distance is measured by the number of hops
- Implemented by the `routed` program designed at the University of California at Berkeley
 - Became popular because it was distributed with BSD UNIX
- RIP participants are either **active** or **passive**
 - Active participants are routers that advertise their routes to others
 - Passive participants are hosts that do not advertise routes but use advertisements to update their routes

15

Routing Information Protocol (RIP) (2)

- An active participant broadcasts a message every 30 seconds
 - RIP messages are encapsulated in UDP datagrams
 - A RIP server listens at UDP port 520
- Route restrictions
 - An old route is retained until a new one with a strictly lower cost is received
 - Routes timeout after 180 seconds
 - The maximum possible distance is 16, so RIP only works with relatively small autonomous systems
- RIP suffers from the problems that are inherent in vector-distance routing
- RIP does not employ router authentication

16

The HELLO Protocol

- A defunct IGP protocol for vector-distance routing
- Routes are measured by network delay instead of number of hops
 - * A node represents a router or an SPN
 - * One router can be directly connected to another router in the graph
- Kinds of OSPF messages:
 - Hello (to test router reachability)
 - Graph description (to initialize a router's topology graph)
 - Link status (to update a link in a router's topology graph)
- OSPF messages are encapsulated in IP datagrams

17

19

The Open SPF Protocol (OSPF) (1)

- An IGP protocol for link-state (SPF) routing
- Provides support for:
 - **Type of service routing:** Routing is done on the basis of both destination address and type of service (precedence plus low delay, high throughput, or high reliability)
 - **Load balancing:** The same traffic can be distributed over multiple routes
 - **Area organization:** Local networks and routers can be organized into independent **areas**
 - **Authentication:** Routers must authenticate each other
 - **Subnet routes:** Routes may be directed to subnets
 - **Information forwarding:** Routers may forward information received from routers exterior to a site

18

The gated Program

- Handles multiple routing protocols including both IGP and EGP
- Allows a router to communicate with routers both inside and outside its autonomous system
- IGPs supported include: RIP, HELLO, OSPF
- EGPs supported include: BGP

19

The Open SPF Protocol (OSPF) (2)

- **Graph structure:** Each router keeps a graph of the topology of the internet whose structure is more complex than that of other link-state routing protocols
 - * A node represents a router or an SPN
 - * One router can be directly connected to another router in the graph
- Kinds of OSPF messages:
 - Hello (to test router reachability)
 - Graph description (to initialize a router's topology graph)
 - Link status (to update a link in a router's topology graph)
- OSPF messages are encapsulated in IP datagrams

20