
SE 4C03 Winter 2006

05 Transport Protocols

Instructor: W. M. Farmer

Revised: 26 January 2006

1



Interprocess Communication

Problem: How can a process on one host access a service

provided by a process on another host?

• Processes are constantly coming into and going out of

existence

• Processes are often replaced (e.g., when the host is

rebooted)

• Processes may provide multiple services

• Processes usually do not broadcast the services they

provide

Solution: Interprocess communication is performed

between protocol ports instead of the processes

themselves

2



Protocol Ports

A protocol port is a nonnegative integer used as an

abstract delivery point

• Ports are assigned to processes by the operating

system

• There are 216 ports ranging from 0 to 65535

• There are two sets of ports, one for UDP and one for

TCP

• Each active port is assigned a queue to hold incoming

packets

3



Reserved and Ephemeral Ports

• The reserved ports (0 to 1023) are assigned statically

– Many of them are assigned to a standard server process

(e.g., TCP 23 is assigned to the telnet server)

– On Unix systems, they are reserved for processes

running as root

• The ephemeral ports (1024 to 65535) are assigned

dynamically

– They are usually assigned to client processes

– When the process assigned to an ephemeral port

terminates, the port is put back in the pool of available

ports

4



User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) defines a

mechanism for sending UDP datagrams from one

application process to another

• Provides unreliable connectionless communication

• Protocol ports are used to distinguish between

processes

• UDP datagrams are encapsulated in IP datagrams

• The IP protocol type for UDP is 17

• UDP datagrams are completely independent from each

other at the transport layer

5



Format of a UDP Datagram

• Header

– UDP source port (16 bits)

– UDP destination port (16 bits)

– UDP message length (16 bits)

– UDP checksum (16 bits) holds checksum of the UDP

datagram plus some of the header information of the

encapsulating IP datagram including the source and

destination addresses

• Data area

6



Stream Delivery

Problem: Many applications require reliable stream

delivery

• Need to handle large volumes of data

• Need to handle lost, out-of-order, and duplicated data

7



Reliable Stream Delivery Service

1. Stream orientation: Data is sent as a stream of bits

(or bytes)

2. Virtual circuit connection: An illusion of a

communication circuit is created

3. Buffered transfer: The stream of bits is divided into a

stream of packets

4. Unstructured stream: The stream delivery service treats

the stream as if it were completely unstructured

5. Full duplex connection: A connection consists of two

independent streams flowing in different directions

8



Reliable Stream Delivery Service (cont.)

6. Reliability: Reliability is achieved through

positive acknowledgment with retransmission

• The receiver of a packet sends an acknowledgment

message back to the sender

• Unacknowledged packets are retransmitted

• Each packet is assigned a sequence number so that

lost or out-of-order packets can be detected

9



The Transmission Control Protocol (TCP)

• Provides a reliable stream delivery service

• Can be used with the IP datagram delivery service and

many other packet delivery services as well

• The IP protocol type for TCP is 6

• Like UDP, uses protocol ports for addressing processes

• Views the data stream as a stream of octets

• Divides the octet stream into segments each composed

of a header and a data area

10



TCP Segment Header Fields

• Source port

• Destination port

• Sequence number

• Acknowledgment number

• Header length

• Code bits

• Window advertisement

• Checksum

• Urgent pointer

• Options
11



TCP Segment Header Notes

• The sequence number is the position in the octet stream

of the first octet held in the data area

• The code bits (URG, ACK, PSH, RST, SYN, and FIN)

are used to identify the type of the segment

• The maximum segment size (MSS) is transferred in

the options field

• The checksum field holds the checksum of the TCP

segment plus some of the header information of the

encapsulating IP datagram including the source and

destination addresses

12



TCP Connections

• A TCP connection is identified by the endpoints of the

connection

– An endpoint is identified as a host-port pair (where

the host is identified by an IP address)

– Multiple connections to the same endpoint are possible

• To open a TCP connection requires cooperation by both

endpoints

– One endpoint performs a passive open by requesting

a port at which to listen

– The other endpoint requests an active open to

establish a connection

13



TCP Acknowledgments

• A TCP acknowledgment is the position in the octet
stream of the first octet that has not yet been received

– Advantages:

∗ Acknowledgments are simple

∗ Lost acknowledgments do not necessarily lead to
retransmission

∗ The sender has to only managed one piece of
information: the position in the octet stream
marking the first unacknowledged segment

– Disadvantage:

∗ Several segments may be retransmitted because an
earlier segment was lost

• Acknowledgments for segments going in one direction can
be “piggybacked” on segments going the other direction

14



Establishing a TCP Connection

A three-way handshake establishes a TCP connection:

1. The sender transmits a segment with the SYN bit but

not the ACK bit set

– The segment contains the sender’s initial sequence

number x

2. The receiver acknowledges the SYN segment by

transmitting a segment with both the SYN and ACK

bits set

– The segment contains the receiver’s initial sequence

number y

– The segment’s acknowledgment value is x + 1

3. The sender acknowledges the SYN/ACK segment by

transmitting a segment with the ACK bit but not the

SYN bit set

– The segment’s acknowledgment value is y + 1

15



Closing a TCP Connection

• Once a TCP connection is established, the two endpoints

have exactly the same status

• A four-way handshake closes a TCP connection:

1. One endpoint transmits a segment with the FIN bit

set

2. The other endpoint transmits a segment that

acknowledges the FIN segment (which closes one

direction of the connection)

3. Later the second endpoint transmits a segment with

the FIN bit set

4. The first endpoint transmits a segment that

acknowledges the FIN segment (which closes the other

direction of the connection)

16



The Other Code Bits

• The URG code bit and the urgent pointer are used to send

urgent out-of-sequence information such as an interrupt

or abort message

• Either endpoint can instantaneously kill a connection by

transmitting a segment with the RST bit set

• An application can force data to be transmitted

immediately in a partially filled TCP segment by issuing

a push command

– The data is transmitted in a segment with the PSH

bit set

– When the segment is received, it is forwarded to the

application immediately

17



Sliding Window Technique

TCP uses the sliding window technique (with variable

window size) to:

• Maximize the throughput of octets

• Control end-to-end octet flow

– Each acknowledgment contains a window

advertisement that specifies how much room is

available in receiver’s buffer

– The window advertisement is used by the sender to

adjust its window size

18



Retransmission

• When a TCP segment is transmitted, a timer is started,

and if this timer expires before an acknowledgment is

received, the TCP segment is retransmitted

• The timeout value for the connection is computed by an

adaptive retransmission algorithm

– The timeout value is adjusted as the performance of

the connection changes

– The algorithm computes the sample round trip time

as a weighted average of the round trip times for the

segments sent across the connection

– The timeout value is then computed from the sample

round trip time using the estimated variance of the

round trip times

19



Acknowledgment Ambiguity

• The round trip time is hard to measure when a packet

is retransmitted because the acknowledgment does not

say which copy of the packet was received. This is called

acknowledgment ambiguity

• Karn’s Algorithm: Estimate the sample round trip time

using only unambiguous acknowledgments and use a

backoff strategy to gradually increase the timeout value

when retransmission occurs

• The algorithm works well even under adverse situations

20



Congestion Collapse

• If segments are retransmitted due to congestion (which

the connection endpoints cannot observe), retransmission

can aggravate congestion and cause congestion collapse

• Multiplicative Decrease Congestion Avoidance:

– The sender maintains a congestion window in

addition to the receiver’s window (given by the

window advertisement)

– The sender’s window is computed as the minimum of

the receiver’s window and the congestion window

– When a segment is loss (and thus when there is

possible congestion), the congestion window is halved

and the timeout value is doubled

– The congestion window always allows at least one

segment so that the connection is not completely

shutdown
21



Congestion Collapse (cont.)

• The Slow-Start Recovery technique increases the

congestion window size one segment at a time after a

period of congestion to avoid wild oscillations in the

congestion window size

• None of these algorithms and techniques are

computationally expensive

22



Silly Window Syndrome

• Symptoms:

– Each acknowledgment from the receiver advertises a

small window

– Each segment sent carries a small amount of data

• Outcome: suboptimal throughput

• Heuristics for Avoiding the Syndrome:

– Receive-side silly window avoidance

– Send-side silly window avoidance

23



Receive-Side Silly Window Avoidance

• Heuristic: Do not advertise small windows but wait until

the window is one half the buffer size or equal to the

maximum segment size

• Two implementations:

– Send acknowledgment without advertisement

– Delay acknowledgment (recommended by the TCP

protocol)

∗ Advantage: Can increase throughput

∗ Disadvantage: May cause more retransmissions

24



Send-Side Silly Window Avoidance

• Known as the Nagle algorithm (RFC 896)

• Heuristic: While waiting for acknowledgments, clump

additional data together in one packet and wait to send

it until either all acknowledgments have been received or

there is enough data to fill a maximum-size packet

• Outcome: Information is sent as fast as the network and

destination can handle it

25


