SE 4C03 Winter 2006

05 Transport Protocols

Instructor: W. M. Farmer

Revised: 26 January 2006

Interprocess Communication

Problem: How can a process on one host access a service
provided by a process on another host?

e Processes are constantly coming into and going out of
existence

e Processes are often replaced (e.g., when the host is
rebooted)

e Processes may provide multiple services

e Processes usually do not broadcast the services they
provide

Solution: Interprocess communication is performed
between protocol ports instead of the processes
themselves

Protocol Ports

A protocol port is a nonnegative integer used as an
abstract delivery point

e Ports are assigned to processes by the operating
system

e There are 216 ports ranging from 0 to 65535

e [here are two sets of ports, one for UDP and one for
TCP

e Each active port is assigned a queue to hold incoming
packets

Reserved and Ephemeral Ports

e The reserved ports (0 to 1023) are assigned statically

— Many of them are assigned to a standard server process
(e.g., TCP 23 is assigned to the telnet server)

— On Unix systems, they are reserved for processes
running as root

e The ephemeral ports (1024 to 65535) are assigned
dynamically

— They are usually assigned to client processes

— When the process assigned to an ephemeral port
terminates, the port is put back in the pool of available
ports

User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) defines a
mechanism for sending UDP datagrams from one
application process to another

e Provides unreliable connectionless commmunication

e Protocol ports are used to distinguish between
processes

e UDP datagrams are encapsulated in IP datagrams
e [he IP protocol type for UDP is 17

e UDP datagrams are completely independent from each
other at the transport layer

Format of a UDP Datagram

e Header

— UDP source port (16 bits)
— UDP destination port (16 bits)
— UDP message length (16 bits)

— UDP checksum (16 bits) holds checksum of the UDP
datagram plus some of the header information of the
encapsulating IP datagram including the source and
destination addresses

e Data area

Stream Delivery

Problem: Many applications require reliable stream
delivery

e Need to handle large volumes of data

e Need to handle lost, out-of-order, and duplicated data

Reliable Stream Delivery Service

1. Stream orientation: Data is sent as a stream of bits
(or bytes)

2. Virtual circuit connection: An illusion of a
communication circuit is created

3. Buffered transfer: The stream of bits is divided into a
stream of packets

4. Unstructured stream: The stream delivery service treats
the stream as if it were completely unstructured

5. Full duplex connection: A connection consists of two
independent streams flowing in different directions

Reliable Stream Delivery Service (cont.)

6. Reliability: Reliability is achieved through
positive acknowledgment with retransmission

e [he receiver of a packet sends an acknowledgment
message back to the sender

e Unacknowledged packets are retransmitted

e Each packet is assigned a sequence number so that
lost or out-of-order packets can be detected

The Transmission Control Protocol (TCP)

e Provides a reliable stream delivery service

e Can be used with the IP datagram delivery service and
many other packet delivery services as well

e [he IP protocol type for TCP is 6
o Like UDP, uses protocol ports for addressing processes
e Views the data stream as a stream of octets

e Divides the octet stream into segments each composed
of a header and a data area

10

TCP Segment Header Fields

e Source port

e Destination port

e Sequence number

e Acknowledgment number
e Header length

e Code bits

e Window advertisement

e Checksum

e Urgent pointer

e Options

11

TCP Segment Header Notes

e [he sequence number is the position in the octet stream
of the first octet held in the data area

e The code bits (URG, ACK, PSH, RST, SYN, and FIN)
are used to identify the type of the segment

e The maximum segment size (MSS) is transferred in
the options field

e T he checksum field holds the checksum of the TCP
segment plus some of the header information of the
encapsulating IP datagram including the source and
destination addresses

12

T CP Connections

e A TCP connection is identified by the endpoints of the
connection

— An endpoint is identified as a host-port pair (where

the host is identified by an IP address)
— Multiple connections to the same endpoint are possible

e To open a TCP connection requires cooperation by both
endpoints

— One endpoint performs a passive open by requesting
a port at which to listen

— The other endpoint requests an active open to
establish a connection

13

TCP Acknowledgments

e A TCP acknowledgment is the position in the octet
stream of the first octet that has not yet been received

— Advantages:
x Acknowledgments are simple
x Lost acknowledgments do not necessarily lead to
retransmission
x [he sender has to only managed one piece of
information: the position in the octet stream
marking the first unacknowledged segment
— Disadvantage:
x Several segments may be retransmitted because an
earlier segment was lost

e Acknowledgments for segments going in one direction can
be “piggybacked” on segments going the other direction

14

Establishing a TCP Connection

A three-way handshake establishes a TCP connection:

1. The sender transmits a segment with the SYN bit but
not the ACK bit set
— The segment contains the sender’s initial sequence
number x
2. The receiver acknowledges the SYN segment by
transmitting a segment with both the SYN and ACK
bits set
— The segment contains the receiver’s initial sequence
number y
— The segment’s acknowledgment value is z + 1
3. The sender acknowledges the SYN/ACK segment by
transmitting a segment with the ACK bit but not the
SYN bit set
— The segment’s acknowledgment value is y + 1

15

Closing a TCP Connection

e Once a TCP connection is established, the two endpoints
have exactly the same status

e A four-way handshake closes a TCP connection:

1.

One endpoint transmits a segment with the FIN bit
set

. T he other endpoint transmits a segment that

acknowledges the FIN segment (which closes one
direction of the connection)

. Later the second endpoint transmits a segment with

the FIN bit set

. The first endpoint transmits a segment that

acknowledges the FIN segment (which closes the other
direction of the connection)

16

T he Other Code Bits

e [he URG code bit and the urgent pointer are used to send
urgent out-of-sequence information such as an interrupt
or abort message

e Either endpoint can instantaneously kill a connection by
transmitting a segment with the RST bit set

e An application can force data to be transmitted
immediately in a partially filled TCP segment by issuing
a push command

— The data is transmitted in a segment with the PSH
bit set

— When the segment is received, it is forwarded to the
application immediately

17

Sliding Window Technique

TCP uses the sliding window technique (with variable
window size) to:

e Maximize the throughput of octets

e Control end-to-end octet flow

— Each acknowledgment contains a window
advertisement that specifies how much room is
available in receiver's buffer

— The window advertisement is used by the sender to
adjust its window size

18

Retransmission

e When a TCP segment is transmitted, a timer is started,
and if this timer expires before an acknowledgment is
received, the TCP segment is retransmitted

e [he timeout value for the connection is computed by an
adaptive retransmission algorithm

— The timeout value is adjusted as the performance of
the connection changes

— The algorithm computes the sample round trip time
as a weighted average of the round trip times for the
segments sent across the connection

— The timeout value is then computed from the sample
round trip time using the estimated variance of the
round trip times

19

Acknowledgment Ambiguity

e [he round trip time is hard to measure when a packet
IS retransmitted because the acknowledgment does not
say which copy of the packet was received. This is called
acknowledgment ambiguity

e Karn’s Algorithim: Estimate the sample round trip time
using only unambiguous acknowledgments and use a
backoff strategy to gradually increase the timeout value
when retransmission occurs

e T he algorithm works well even under adverse situations

20

Congestion Collapse

e If segments are retransmitted due to congestion (which
the connection endpoints cannot observe), retransmission
can aggravate congestion and cause congestion collapse

e Multiplicative Decrease Congestion Avoidance:

— The sender maintains a congestion window in
addition to the receiver’s window (given by the
window advertisement)

— The sender’'s window is computed as the minimum of
the receiver's window and the congestion window

— When a segment is loss (and thus when there is
possible congestion), the congestion window is halved
and the timeout value is doubled

— The congestion window always allows at least one
segment so that the connection is not completely

shutdown
21

Congestion Collapse (cont.)

e [he Slow-Start Recovery technique increases the
congestion window size one segment at a time after a

period of congestion to avoid wild oscillations in the
congestion window size

e None of these algorithms and techniques are
computationally expensive

22

Silly Window Syndrome

e Symptoms:

— Each acknowledgment from the receiver advertises a
small window

— Each segment sent carries a small amount of data

e Outcome: suboptimal throughput

e Heuristics for Avoiding the Syndrome:

— Receive-side silly window avoidance
— Send-side silly window avoidance

23

Receive-Side Silly Window Avoidance

e Heuristic: Do not advertise small windows but wait until
the window is one half the buffer size or equal to the
Mmaximum segment size

e [WO implementations:

— Send acknowledgment without advertisement
— Delay acknowledgment (recommended by the TCP

protocol)
x Advantage: Can increase throughput

x Disadvantage: May cause more retransmissions

24

Send-Side Silly Window Avoidance

e Known as the Nagle algorithm (RFC 896)

e Heuristic: While waiting for acknowledgments, clump
additional data together in one packet and wait to send
it until either all acknowledgments have been received or
there is enough data to fill a maximum-size packet

e OQutcome: Information is sent as fast as the network and
destination can handle it

25

