

SE 4C03 Winter 2006

07 Overview of Cryptography

Instructor: W. M. Farmer

Revised: 10 March 2007

What is Cryptography?

- **Cryptography** is a collection of mathematical techniques for:
 - Protecting data privacy
 - Protecting data integrity
 - Verifying the identity of objects
 - Verifying the identity of subjects
 - Producing random objects
- Principal techniques:
 - Cryptographic hashing
 - Conventional encryption
 - Public key encryption
 - One-way encryption
 - Random number generation

Hashing

- Given an object as input, a **hash function** returns an identification code (called a **hash code**) for the object
- A hash function has the following properties:
 - The output has a fixed size, much smaller than the size of the input
 - The function is many-to-one (so **collisions** are possible)
 - The function is deterministic and easy to compute
- Hash functions are used to:
 - Build rapidly accessible data storage structures called **hash tables**
 - Produce **checksums** for checking data integrity

Cryptographic Hashing

- A **cryptographic hash function** is a hash function whose purpose is to produce a “fingerprint” (called a **message digest**, **cryptographic hash code**, or **cryptographic checksum**) of an input object
- A cryptographic hash function h has the following properties:
 - Given a hash code c , it is mathematically infeasible to find an object x such that $h(x) = c$ (**one-way property**)
 - Given an object x , it is mathematically infeasible to find another object y such that $h(x) = h(y)$ (**weak collision property**)
 - It is mathematically infeasible to find two objects x and y such that $h(x) = h(y)$ (**strong collision property**)

Conventional Encryption

- A single **key** is required that is kept secret
- **Encryption:** plaintext, key \xrightarrow{f} ciphertext
- **Decryption:** ciphertext, key $\xrightarrow{f^{-1}}$ plaintext
- f and f^{-1} are the encryption and decryption algorithms, respectively
- **Key assumption:** Computation of the plaintext from the ciphertext is mathematically infeasible without the key
- In practice, the security of the process depends primarily on maintaining the secrecy of the secret key

Ciphers

- A **cipher** is a encryption/decryption method
- Mono-alphabetic ciphers (letter-for-letter substitution)
 - Caesar (rotation) ciphers (25 possible keys)
 - Shuffle ciphers (26! possible keys)
- Cipher techniques
 - Substitution
 - Transposition
 - Stream translation
 - Block translation

Cryptanalysis

- **Cryptanalysis** is the process of discovering how to decrypt ciphertext without the secret key
- Approaches:
 - Brute force: try all possible keys
 - Exploit known plaintext
 - Exploit chosen plaintext
 - Analyze encryption and decryption algorithms
- Criteria for measuring the effectiveness of a cipher:
 - Cost of breaking the cipher vs.
Value of the encrypted information
 - Time required to break the cipher vs.
The useful lifetime of the encrypted information

Data Encryption Standard (DES)

- Most widely used conventional encryption algorithm
 - Developed by IBM in the late 1960s
 - Adopted by the USA National Institute of Standards and Technology (NIST) in 1977
- Process
 - Same algorithm used for encryption and decryption
 - Encryption is performed in 64-bit blocks
 - Change of single input bit changes almost all output bits
 - Key is 56 bits long (as requested by USA NSA)
- Security concerns:
 - Key length (brute force attacks work)
 - Internal algorithm structure (design analysis is classified)

Advanced Encryption Standard (AES)

- Competitively selected replacement for DES
 - Developed by Joan Daemen and Vincent Rijmen
 - Adopted by the USA National Institute of Standards and Technology (NIST) in 2001
- Process
 - Same algorithm used for encryption and decryption
 - Encryption is performed in 128-bit blocks
 - Key is 128, 192, or 256 bits long
 - AES algorithm is much faster than DES algorithm
- Security issues:
 - AES has been approved by the USA National Security Agency (NSA) for Top Secret information
 - The algorithm is unclassified, publicly disclosed, and royalty-free

International Data Encryption Algorithm (IDEA)

- Developed by Xuejia Lai and James Massey of Swiss Federal Institute of Technology and published in 1990
 - Patented by Ascom-Tech AG
 - No license fee required for noncommercial use
- Process:
 - Same algorithm used for encryption and decryption
 - 128-bit key is used to encrypt data in 64-bit blocks
- Major alternative to DES
 - Faster than DES
 - Considered more secure than DES
 - Included in the Pretty Good Privacy (PGP) package

Blowfish

- Developed by Bruce Schneier around 1993
 - Available without fee for all uses
- Fast, compact, easy to implement
- Variable-length key (up to 448 bits long) is used to encrypt 64-bit blocks
 - Higher speed and higher security can be traded off
- Considered to be an extremely strong algorithm

Secret-Key Distribution

- Problem: Often too many secret keys are needed to deliver them all physically
- Key distribution scheme
 - A **key distribution center (KDC)** holds a unique **master key** for each end system
 - Communication between end systems is encrypted using a temporary key called a **session key**
 - * One end system A requests a session key from KDC to communicate with another end system B
 - * The KDC sends A back a message encrypted with A 's master key containing the session key and a message for B encrypted with B 's master key
 - * The latter message, which contains the session key and A 's identity, is sent to B by A
- The whole system fails if the KDC is compromised

Application: Link Encryption

- Data transmitted on a communication link is encrypted
- Every pair of routers that share a link need to share a unique secret key
- The entire data area of a frame is encrypted
- The data area of the frame must be decrypted when it arrives at a router
 - The message is exposed to intermediate routers

Application: End-to-End Encryption

- Data is encrypted by the sender and decrypted by the receiver
- Only the data part of a packet is encrypted
- Can be performed at different TCP/IP layers
 1. Application layer (e.g., telnet, e-mail)
 - Only parts of the TCP/UDP data area are encrypted
 - IP, TCP, and UDP software need not be modified
 2. Transport layer (TCP, UDP)
 - Entire TCP/UDP data area is encrypted
 - TCP/UDP layer software must be modified
 3. Internet layer (IP)
 - Entire IP data area is encrypted
 - IP layer software must be modified

Application: IP Tunneled Through IP

- Encrypted IP datagram is encapsulated in another IP datagram
- The Internet is treated as an SPN
- Used to create Virtual Private Networks (VPNs)

Public Key Encryption

- Discovery
 - Discovered but held secret by USA NSA and UK Communications-Electronic Security Group in mid to late 1960s
 - Discovered and publicized by Whitfield Diffie and Martin Hellman at Stanford University in 1976
- Motivation
 - Difficulty of secret-key distribution: secrecy must be shared
 - Need for digital signatures that can be verified by arbitrary parties

Public Key Encryption: Basic Process

- Each end system has two keys:
 - **Private key** that is kept secret
 - **Public key** that is made public
- **Encryption:** plaintext, public key \xrightarrow{f} ciphertext
- **Decryption:** ciphertext, private key \xrightarrow{f} plaintext
- **Signature writing:** plaintext, private key \xrightarrow{f} ciphertext
- **Signature reading:** ciphertext, public key \xrightarrow{f} plaintext
- The same algorithm is used for both encryption and decryption
- It is mathematically infeasible to derive the private key from the public key

Public Key Encryption Applications (1)

1. Privacy

- The sender encrypts the plaintext message with the receiver's public key
- The receiver decrypts the ciphertext message with its private key

2. Integrity, digital signature, and nonrepudiation

- The sender encrypts the message digest of the sent text with its private key
- The receiver decrypts the encrypted message digest with the sender's public key and compares it with the message digest of the received text

Public Key Encryption Applications (2)

3. Privacy and integrity

- The sender encrypts the plaintext message with its private key
- The sender encrypts the ciphertext message with the receiver's public key
- The receiver decrypts the ciphertext message with its private key
- The receiver decrypts the ciphertext message with the sender's public key

4. Secret-key exchange

Diffie-Hellman Key Exchange Algorithm

- Appeared in original 1976 Diffie-Hellman paper
- Used only for secret key exchange

RSA Algorithm

- Developed by Ron Rivest, Adi Shamir, and Len Adleman at MIT in 1977
- Supports privacy, digital signature, and secret-key exchange
- Most widely used public key algorithm
- The keys are generated from two large prime numbers p and q
 - p and q are private
 - The product of p and q is public

Public Key Management

- Problem: How are public key forgeries prevented?
- Public key distribution
 - Public announcement
 - Public key directory
 - Public key authority secured using cryptographic measures
 - Public key certificates provided by a certificate authority

Conventional vs. Public Key Encryption

- Conventional encryption is more efficient than public key encryption
- Public key encryption is very versatile
- Public/private key pairs are easily changed or revoked