SE 4C03 Winter 2007

05 Transport Protocols

William M. Farmer

Department of Computing and Software McMaster University

5 February 2007

Interprocess Communication

Problem: How can a process on one host access a service provided by a process on another host?

- Processes are constantly coming into and going out of existence.
- Processes are often replaced (e.g., when the host is rebooted).
- Processes may provide multiple services.
- Processes usually do not broadcast the services they provide.

Solution: Interprocess communication is performed between protocol ports instead of the processes themselves.

Protocol Ports

A protocol port is a nonnegative integer used as an abstract delivery point.

- Ports are assigned to processes by the operating system.
- ▶ There are 2^{16} ports ranging from 0 to 65535.
- ► There are two sets of ports, one for UDP and one for TCP.
- Each active port is assigned a queue to hold incoming packets.

Reserved and Ephemeral Ports

- The reserved ports (0 to 1023) are assigned statically.
 - Many of them are assigned to a standard server process (e.g., TCP 23 is assigned to the telnet server).
 - On Unix systems, they are reserved for processes running as root.
- The ephemeral ports (1024 to 65535) are assigned dynamically.
 - They are usually assigned to client processes.
 - When the process assigned to an ephemeral port terminates, the port is put back in the pool of available ports.

User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) defines a mechanism for sending UDP datagrams from one application process to another.

- Provides unreliable connectionless communication.
- Protocol ports are used to distinguish between processes.
- UDP datagrams are encapsulated in IP datagrams.
- The IP protocol type for UDP is 17.
- UDP datagrams are completely independent from each other at the transport layer.

Format of a UDP Datagram

- Header
 - ▶ UDP source port (16 bits).
 - ► UDP destination port (16 bits).
 - ► UDP message length (16 bits).
 - ▶ UDP checksum (16 bits) holds checksum of the UDP datagram plus some of the header information of the encapsulating IP datagram including the source and destination addresses.
- Data area

Stream Delivery

Problem: Many applications require reliable stream delivery.

- Need to handle large volumes of data.
- Need to handle lost, out-of-order, and duplicated data.

Reliable Stream Delivery Service

- 1. Stream orientation: Data is sent as a stream of bits (or bytes).
- 2. Virtual circuit connection: An illusion of a communication circuit is created.
- 3. Buffered transfer: The stream of bits is divided into a stream of packets.
- 4. Unstructured stream: The stream delivery service treats the stream as if it were completely unstructured.
- 5. Full duplex connection: A connection consists of two independent streams flowing in different directions.
- 6. Reliability: Reliability is achieved through positive acknowledgment with retransmission.

Positive Acknowledgment with Retransmission

- The receiver of a packet sends an acknowledgment message back to the sender.
- Unacknowledged packets are retransmitted.
- Each packet is assigned a sequence number so that lost or out-of-order packets can be detected.

The Transmission Control Protocol (TCP)

- Provides a reliable stream delivery service.
- Can be used with the IP datagram delivery service and many other packet delivery services as well.
- The IP protocol type for TCP is 6.
- Like UDP, uses protocol ports for addressing processes.
- Views the data stream as a stream of octets.
- Divides the octet stream into segments each composed of a header and a data area.

TCP Segment Header Fields

- Source port.
- Destination port.
- Sequence number.
- Acknowledgment number.
- Header length.
- Code bits.
- Window advertisement.
- Checksum.
- Urgent pointer.
- Options.

TCP Segment Header Notes

- The sequence number is the position in the octet stream of the first octet held in the data area.
- The code bits (URG, ACK, PSH, RST, SYN, and FIN) are used to identify the type of the segment.
- The maximum segment size (MSS) is transferred in the options field.
- The checksum field holds the checksum of the TCP segment plus some of the header information of the encapsulating IP datagram including the source and destination addresses.

TCP Connections

- A TCP connection is identified by the endpoints of the connection.
 - An endpoint is identified as a host-port pair (where the host is identified by an IP address).
 - Multiple connections to the same endpoint are possible.
- To open a TCP connection requires cooperation by both endpoints.
 - One endpoint performs a passive open by requesting a port at which to listen.
 - ► The other endpoint requests an active open to establish a connection.

Establishing a TCP Connection

A three-way handshake establishes a TCP connection:

- 1. The sender transmits a segment with the SYN bit but not the ACK bit set.
 - ► The segment contains the sender's initial sequence number *x*.
- 2. The receiver acknowledges the SYN segment by transmitting a segment with both the SYN and ACK bits set.
 - The segment contains the receiver's initial sequence number y.
 - ▶ The segment's acknowledgment value is x + 1.
- 3. The sender acknowledges the SYN/ACK segment by transmitting a segment with the ACK bit but not the SYN bit set.
 - ▶ The segment's acknowledgment value is y + 1.

Closing a TCP Connection

- Once a TCP connection is established, the two endpoints have exactly the same status.
- A four-way handshake closes a TCP connection:
 - 1. One endpoint transmits a segment with the FIN bit set.
 - 2. The other endpoint transmits a segment that acknowledges the FIN segment (which closes one direction of the connection).
 - 3. Later the second endpoint transmits a segment with the FIN bit set.
 - 4. The first endpoint transmits a segment that acknowledges the FIN segment (which closes the other direction of the connection).

The Other Code Bits

- The URG code bit and the urgent pointer are used to send urgent out-of-sequence information such as an interrupt or abort message.
- Either endpoint can instantaneously kill a connection by transmitting a segment with the RST bit set.
- An application can force data to be transmitted immediately in a partially filled TCP segment by issuing a push command.
 - The data is transmitted in a segment with the PSH bit set.
 - When the segment is received, it is forwarded to the application immediately.

TCP Acknowledgments

 A TCP acknowledgment is the position in the octet stream of the first octet that has not yet been received.

Advantages:

- Acknowledgments are simple.
- Lost acknowledgments do not necessarily lead to retransmission.
- ► The sender has to only managed one piece of information: the position in the octet stream marking the first unacknowledged segment.

• Disadvantage:

- Several segments may be retransmitted because an earlier segment was lost.
- Acknowledgments for segments going in one direction can be "piggybacked" on segments going the other direction.

Sliding Window Technique

- TCP uses the sliding window technique (with variable window size) to:
 - Maximize the throughput of octets.
 - Control end-to-end octet flow.
- Each acknowledgment contains a window advertisement that specifies how much room is available in receiver's buffer.
- The window advertisement is used by the sender to adjust its window size.

Retransmission

- When a TCP segment is transmitted, a timer is started, and if this timer expires before an acknowledgment is received, the TCP segment is retransmitted.
- The timeout value for the connection is computed by an adaptive retransmission algorithm.
 - The timeout value is adjusted as the performance of the connection changes.
 - ► The algorithm computes the sample round trip time as a weighted average of the round trip times for the segments sent across the connection.
 - The timeout value is then computed from the sample round trip time using the estimated variance of the round trip times.

Acknowledgment Ambiguity

- The round trip time is hard to measure when a packet is retransmitted because the acknowledgment does not say which copy of the packet was received. This is called acknowledgment ambiguity.
- Karn's algorithm: Estimate the sample round trip time using only unambiguous acknowledgments and use a backoff strategy to gradually increase the timeout value when retransmission occurs.
- The algorithm works well even under adverse situations.

Congestion Collapse (1)

- If segments are retransmitted due to congestion (which the connection endpoints cannot observe), retransmission can aggravate congestion and cause congestion collapse.
- Multiplicative decrease congestion avoidance:
 - ► The sender maintains a congestion window in addition to the receiver's window (given by the window advertisement).
 - ► The sender's window is computed as the minimum of the receiver's window and the congestion window.
 - When a segment is loss (and thus when there is possible congestion), the congestion window is halved and the timeout value is doubled.
 - ► The congestion window always allows at least one segment so that the connection is not completely shutdown.

Congestion Collapse (2)

- The slow-start recovery technique increases the congestion window size one segment at a time after a period of congestion to avoid wild oscillations in the congestion window size.
- None of these algorithms and techniques are computationally expensive.

Silly Window Syndrome

- Symptoms:
 - ► Each acknowledgment from the receiver advertises a small window.
 - Each segment sent carries a small amount of data.
- Outcome: suboptimal throughput.
- Heuristics for Avoiding the Syndrome:
 - Receive-side silly window avoidance.
 - Send-side silly window avoidance.

Receive-Side Silly Window Avoidance

- Heuristic: Do not advertise small windows but wait until the window is one half the buffer size or equal to the maximum segment size.
- Two implementations:
 - 1. Send acknowledgment without advertisement.
 - 2. Delay acknowledgment (recommended by the TCP protocol).
- Advantage: Can increase throughput.
- Disadvantage: May cause more retransmissions.

Send-Side Silly Window Avoidance

- Known as the Nagle algorithm (RFC 896).
- Heuristic: While waiting for acknowledgments, clump additional data together in one packet and wait to send it until either all acknowledgments have been received or there is enough data to fill a maximum-size packet.
- Outcome: Information is sent as fast as the network and destination can handle it.