SE 4C03 Winter 2007

07 Overview of Cryptography

William M. Farmer

Department of Computing and Software McMaster University

10 March 2007

What is Cryptography?

- Cryptography is a collection of mathematical techniques for:
 - Protecting data privacy.
 - Protecting data integrity.
 - Verifying the identity of objects.
 - Verifying the identity of subjects.
 - Producing random objects.
- Principal techniques:
 - Cryptographic hashing.
 - Conventional encryption.
 - Public key encryption.
 - One-way encryption.
 - Random number generation.

Hashing

- Given an object as input, a hash function returns an identification code (called a hash code) for the object.
- A hash function has the following properties:
 - The output has a fixed size, much smaller than the size of the input.
 - The function is many-to-one (so collisions are possible).
 - The function is deterministic and easy to compute.
- Hash functions are used to:
 - Build rapidly accessible data storage structures called hash tables.
 - Produce checksums for checking data integrity.

Cryptographic Hashing

- A cryptographic hash function is a hash function whose purpose is to produce a "fingerprint" (called a message digest, cryptographic hash code, or cryptographic checksum) of an input object.
- A cryptographic hash function h has the following properties:
 - ▶ One-way property: Given a hash code c, it is mathematically infeasible to find an object x such that h(x) = c.
 - ▶ Weak collision property: Given an object x, it is mathematically infeasible to find another object y such that h(x) = h(y).
 - ▶ Strong collision property: It is mathematically infeasible to find two objects x and y such that h(x) = h(y).

Conventional Encryption

- A single key is required that is kept secret.
- Encryption: plaintext, key $\stackrel{f}{\longrightarrow}$ ciphertext.
- Decryption: ciphertext, key $\xrightarrow{f^{-1}}$ plaintext.
- f and f^{-1} are the encryption and decryption algorithms, respectively.
- Main assumption: Computation of the plaintext from the ciphertext is mathematically infeasible without the key.
- In practice, the security of the process depends primarily on maintaining the secrecy of the secret key.

Ciphers

- A cipher is an encryption/decryption method.
- Mono-alphabetic ciphers (letter-for-letter substitution).
 - Caesar (rotation) ciphers (25 possible keys).
 - ▶ Shuffle ciphers (26! possible keys).
- Cipher techniques:
 - Substitution.
 - Transposition.
 - Stream translation.
 - Block translation.

Cryptanalysis

- Cryptanalysis is the process of discovering how to decrypt ciphertext without the secret key
- Approaches:
 - Brute force: try all possible keys.
 - Exploit known plaintext.
 - Exploit chosen plaintext.
 - Analyze encryption and decryption algorithms.
 - Exploit weaknesses in implementations (so-called side channel attacks).
- Criteria for measuring the effectiveness of a cipher:
 - Cost of breaking the cipher vs.
 Value of the encrypted information.
 - ► Time required to break the cipher vs.

 Useful lifetime of the encrypted information.

Data Encryption Standard (DES)

- For many years the most widely used conventional encryption algorithm.
 - Developed by IBM in the late 1960s.
 - Adopted by the USA National Institute of Standards and Technology (NIST) in 1977.

• Process:

- Same algorithm used for encryption and decryption.
- Encryption is performed in 64-bit blocks.
- Change of single input bit changes almost all output bits.
- Key is 56 bits long (as requested by USA National Security Agency (NSA)).

• Security concerns:

- Key length (brute force attacks can now work in less than 24 hours),
- Internal algorithm structure (design analysis is classified).

Advanced Encryption Standard (AES)

- Competitively selected replacement for DES.
 - Developed by Joan Daemen and Vincent Rijmen.
 - Adopted by the USA NIST in 2001.
 - Expected to be used worldwide.

• Process:

- Same algorithm used for encryption and decryption.
- Encryption is performed in 128-bit blocks.
- Key is 128, 192, or 256 bits long.
- AES algorithm is much faster than DES algorithm.

Security issues:

- ► AES was approved in 2003 by the USA NSA for Top Secret information when used with 192- or 256-bit keys.
- As of 2006, the only successful attacks have been side channel attacks based on weaknesses in particular implementations of AES.
- The algorithm is unclassified, publicly disclosed, and royalty-free.

International Data Encryption Algorithm (IDEA)

- Developed by Xuejia Lai and James Massey of Swiss Federal Institute of Technology and published in 1990.
 - Patented by Ascom-Tech AG.
 - No license fee required for noncommercial use.

• Process:

- Same algorithm used for encryption and decryption.
- ▶ 128-bit key is used to encrypt data in 64-bit blocks.
- Major alternative to DES before AES.
 - Faster than DES.
 - Considered much more secure than DES.
 - Included in the Pretty Good Privacy (PGP) package.

Blowfish

- Developed by Bruce Schneier around 1993.
 - Available without fee for all uses.
 - Intended as a general-purpose, public-domain replacement for DES.
- Fast, compact, easy to implement.
- Encrypts data in 64-bit blocks.
- Key length may be chosen between 32 and 448 bits.
 - Higher speed and higher security can be traded off.
- Considered to be an extremely strong algorithm.

Key Distribution Centers

- Main challenge for conventional encryption: Secret key distribution!
 - Often too many secret keys are needed to deliver them all physically.
- A key distribution center (KDC) holds a unique master key for each end system.
- Communication between end systems is encrypted using a temporary key called a session key.
 - One end system A requests a session key from KDC to communicate with another end system B.
 - ► The KDC sends A back a message encrypted with A's master key containing the session key and a message for B encrypted with B's master key.
 - ► The latter message, which contains the session key and A's identity, is sent to B by A.
- The whole system fails if the KDC is compromised.

Application: Link Encryption

- Data transmitted on a communication link is encrypted.
- Every pair of routers that share a link need to share a unique secret key.
- The entire data area of a frame is encrypted.
- The data area of the frame must be decrypted when it arrives at a router.
 - ▶ The message is exposed to intermediate routers.

Application: End-to-End Encryption

- Data is encrypted by the sender and decrypted by the receiver.
- Only the data part of a packet is encrypted.
- Can be performed at different TCP/IP layers:
- 1. Application layer (e.g., telnet, SMTP).
 - Only parts of the TCP/UDP data area are encrypted.
 - ▶ IP, TCP, and UDP software need not be modified.
- 2. Transport layer (TCP, UDP).
 - Entire TCP/UDP data area is encrypted.
 - ► TCP/UDP layer software must be modified.
- 3. Internet layer (IP).
 - Entire IP data area is encrypted.
 - ▶ IP layer software must be modified.

Application: IP Tunneled Through IP

- Encrypted IP datagram is encapsulated in another IP datagram.
- The Internet is treated as an SPN.
 - End points look like they are directly connected.
 - Encryption looks like link encryption.
- Used to create virtual private networks (VPNs).

Public Key Encryption

• Discovery:

- Discovered but held secret by USA NSA and UK Communications-Electronic Security Group in mid to late 1960s.
- Discovered and publicized by Whitfield Diffie and Martin Hellman at Stanford University in 1976.

• Motivation:

- Difficulty of secret key distribution: secrecy must be shared.
- Need for digital signatures that can be verified by arbitrary parties.

Public Key Encryption: Basic Process

- Each end system has two keys:
 - Private key that is kept secret.
 - Public key that is made public.
- Encryption: plaintext, public key $\stackrel{f}{\longrightarrow}$ ciphertext.
- Decryption: ciphertext, private key $\stackrel{f}{\longrightarrow}$ plaintext.
- Signature writing: plaintext, private key $\stackrel{f}{\longrightarrow}$ ciphertext.
- Signature reading: ciphertext, public key $\stackrel{f}{\longrightarrow}$ plaintext.
- The same algorithm is used for both encryption and decryption.
- It is mathematically infeasible to derive the private key from the public key.

Public Key Encryption Applications (1)

1. Privacy.

- ► The sender encrypts the plaintext message with the receiver's public key.
- ► The receiver decrypts the ciphertext message with its private key.

2. Integrity, digital signature, and nonrepudiation.

- ► The sender encrypts the message digest of the sent text with its private key.
- ► The receiver decrypts the encrypted message digest with the sender's public key and compares it with the message digest of the received text.

Public Key Encryption Applications (2)

3. Privacy and integrity.

- ► The sender encrypts the plaintext message with its private key.
- ► The sender encrypts the ciphertext message with the receiver's public key.
- ► The receiver decrypts the ciphertext message with its private key.
- ► The receiver decrypts the ciphertext message with the sender's public key.

4. Secret key exchange.

Diffie-Hellman Key Exchange Algorithm

- Appeared in original 1976 Diffie-Hellman paper.
- Used only for secret key exchange.

RSA Algorithm

- Developed by Ron Rivest, Adi Shamir, and Len Adleman at MIT in 1977.
- Supports privacy, digital signature, and secret key exchange.
- Most widely used public key algorithm.
- The keys are generated from two large prime numbers p and q.
 - p and q are private.
 - ► The product of *p* and *q* is public.
 - Underlying assumption: Factoring sufficiently large integers is assumed to be mathematically infeasible.
- RSA is believed to be secure if the keys are sufficiently long.
 - RSA keys are usually 1024–2048 bits long.

Public Key Distribution

- Main challenge for public key encryption: Prevention of public key forgeries!
- Approaches:
 - Public announcement.
 - Public key directory.
 - Public key authority secured using cryptographic measures.
 - Public key certificates provided by a certificate authority.

Conventional vs. Public Key Encryption

- Conventional encryption is much more efficient than public key encryption.
 - Public key encryption is only practical on small pieces of text.
- Public key encryption is much more versatile than conventional encryption.
 - Public key encryption can be used for digital signature and secret key exchange.
 - Public/private key pairs are easily changed or revoked.

Secure Shell (SSH)

- Original version of SSH (SSH-1) was designed in 1995 by Tatu Ylönen of the Helsinki University of Technology.
- SSH servers listen at TCP port 22.
- SSH provides a secure remote shell.
 - Secure communication.
 - Strong authentication.
 - TCP forwarding (tunneling).
- SSH protects against:
 - Disclosure and modification of transmitted data.
 - Password interception.
 - Session hijacking.
 - Source address, route, and DNS spoofing.
- Intended as a complete replacement of telnet, ftp, rlogin, rsh, rcp, and rdist.

Services based on SSH

- Secure remote login (SSH).
- Secure remote file transfer (SFTP).
- Secure remote file copy (SCP).
- Secure X Windows communication.
- Secure file system mounting.
- Secure file system synchronization, e.g., using unison.
- Other services tunneled through SSH.

SSH Architectural Layers

1. Transport.

- Initial session key exchange (using Diffie-Hellman).
- Encryption, compression, integrity.
- Server authentication.
- Session key re-exchange.

2. User authentication.

 Several available user authentication methods including password and public key.

3. Connection.

Management of SSH communication channels.

Establishing an SSH Connection (1)

- 1. Client and server establish a TCP connection.
- 2. Client and server exchange protocol identification.
- 3. Server sends it's (RSA or DSA) public host key to client.
- 4. Client generates a session key, encrypts it with the public host key, and sends it back to server with selected cipher type (such as DES or Blowfish).
- 5. Server decrypts the session key with its private host key and then sends an encrypted confirmation to client.
- 6. Client authenticates server.
 - 6.1 Client checks to see if server's public host key is in the user's known hosts file.
 - 6.2 If no public host key for the server is present, the user is given the opportunity to add it to the known hosts file.
 - 6.3 If the server's public host key has been changed, the user is warned that the server may have been compromised.

Establishing an SSH Connection (2)

- 7. Client authenticates the user to server using (RSA or DSA) public key authentication.
 - 7.1 Server sends a challenge to client encrypted with the user's public key stored on the server.
 - 7.2 Client decrypts the challenge with the user's private key, which is decrypted using the passphrase supplied by the user when the private/public key pair was generated.
 - 7.3 Client sends the required response signed using the user's private key to the server.
 - 7.4 Server verifies the response using the user's public key.
- 8. Client makes several requests to finish setting up the secure channel.

Note: Depending on the version of SSH, other user authentication methods can be supported, such as standard password authentication.