
SE 4C03 Winter 2008

05 Transport Protocols

William M. Farmer

Department of Computing and Software
McMaster University

30 January 2008



Interprocess Communication

Problem: How can a process on one host access a service
provided by a process on another host?

I Processes are constantly coming into and going out of
existence.

I Processes are often replaced (e.g., when the host is
rebooted).

I Processes may provide multiple services.
I Processes usually do not broadcast the services they

provide.

Solution: Interprocess communication is performed
between protocol ports instead of the processes
themselves.

2



Protocol Ports

A protocol port is a nonnegative integer used as an
abstract delivery point.

I Ports are assigned to processes by the operating system.
I There are 216 ports ranging from 0 to 65535.
I There are two sets of ports, one for UDP and one for

TCP.
I Each active port is assigned a queue to hold incoming

packets.

3



Reserved and Ephemeral Ports

The reserved ports (0 to 1023) are assigned statically.

I Many of them are assigned to a standard server process
(e.g., TCP 23 is assigned to the telnet server).

I On Unix systems, they are reserved for processes running
as root.

The ephemeral ports (1024 to 65535) are assigned
dynamically.

I They are usually assigned to client processes.
I When the process assigned to an ephemeral port

terminates, the port is put back in the pool of available
ports.

4



User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) defines a mechanism for
sending UDP datagrams from one application process to
another.

Provides unreliable connectionless communication.

Protocol ports are used to distinguish between processes.

UDP datagrams are encapsulated in IP datagrams.

The IP protocol type for UDP is 17.

UDP datagrams are completely independent from each
other at the transport layer .

5



Format of a UDP Datagram

Header

I UDP source port (16 bits).
I UDP destination port (16 bits).
I UDP message length (16 bits).
I UDP checksum (16 bits) holds checksum of the UDP

datagram plus some of the header information of the
encapsulating IP datagram including the source and
destination addresses.

Data area

6



Stream Delivery

Problem: Many applications require reliable stream delivery.

Need to handle large volumes of data.

Need to handle lost, out-of-order, and duplicated data.

7



Reliable Stream Delivery Service

1. Stream orientation: Data is sent as a stream of bits (or
bytes).

2. Virtual circuit connection: An illusion of a communication
circuit is created.

3. Buffered transfer: The stream of bits is divided into a
stream of packets.

4. Unstructured stream: The stream delivery service treats
the stream as if it were completely unstructured.

5. Full duplex connection: A connection consists of two
independent streams flowing in different directions.

6. Reliability: Reliability is achieved through positive
acknowledgment with retransmission.

8



Positive Acknowledgment with Retransmission

The receiver of a packet sends an acknowledgment
message back to the sender.

Unacknowledged packets are retransmitted.

Each packet is assigned a sequence number so that lost
or out-of-order packets can be detected.

9



The Transmission Control Protocol (TCP)

Provides a reliable stream delivery service.

Can be used with the IP datagram delivery service and
many other packet delivery services as well.

The IP protocol type for TCP is 6.

Like UDP, uses protocol ports for addressing processes.

Views the data stream as a stream of octets.

Divides the octet stream into segments each composed of
a header and a data area.

10



TCP Segment Header Fields

Source port.

Destination port.

Sequence number.

Acknowledgment number.

Header length.

Code bits.

Window advertisement.

Checksum.

Urgent pointer.

Options.

11



TCP Segment Header Notes

The sequence number is the position in the octet stream
of the first octet held in the data area.

The code bits (URG, ACK, PSH, RST, SYN, and FIN)
are used to identify the type of the segment.

The maximum segment size (MSS) is transferred in the
options field.

The checksum field holds the checksum of the TCP
segment plus some of the header information of the
encapsulating IP datagram including the source and
destination addresses.

12



TCP Connections

A TCP connection is identified by the endpoints of the
connection.

I An endpoint is identified as a host-port pair (where the
host is identified by an IP address).

I Multiple connections to the same endpoint are possible.

To open a TCP connection requires cooperation by both
endpoints.

I One endpoint performs a passive open by requesting a
port at which to listen.

I The other endpoint requests an active open to establish
a connection.

13



Establishing a TCP Connection

A three-way handshake establishes a TCP connection:

1. The sender transmits a segment with the SYN bit but not
the ACK bit set.

I The segment contains the sender’s initial sequence
number x .

2. The receiver acknowledges the SYN segment by
transmitting a segment with both the SYN and ACK bits
set.

I The segment contains the receiver’s initial sequence
number y .

I The segment’s acknowledgment value is x + 1.

3. The sender acknowledges the SYN/ACK segment by
transmitting a segment with the ACK bit but not the
SYN bit set.

I The segment’s acknowledgment value is y + 1.
14



Closing a TCP Connection

Once a TCP connection is established, the two endpoints
have exactly the same status.

A four-way handshake closes a TCP connection:

1. One endpoint transmits a segment with the FIN bit set.
2. The other endpoint transmits a segment that

acknowledges the FIN segment (which closes one
direction of the connection).

3. Later the second endpoint transmits a segment with the
FIN bit set.

4. The first endpoint transmits a segment that
acknowledges the FIN segment (which closes the other
direction of the connection).

15



The Other Code Bits

The URG code bit and the urgent pointer are used to
send urgent out-of-sequence information such as an
interrupt or abort message.

Either endpoint can instantaneously kill a connection by
transmitting a segment with the RST bit set.

An application can force data to be transmitted
immediately in a partially filled TCP segment by issuing a
push command.

I The data is transmitted in a segment with the PSH bit
set.

I When the segment is received, it is forwarded to the
application immediately.

16



TCP Acknowledgments

A TCP acknowledgment is the position in the octet
stream of the first octet that has not yet been received.

Advantages:

I Acknowledgments are simple.
I Lost acknowledgments do not necessarily lead to

retransmission.
I The sender has to only managed one piece of

information: the position in the octet stream marking
the first unacknowledged segment.

Disadvantage:

I Several segments may be retransmitted because an
earlier segment was lost.

Acknowledgments for segments going in one direction can
be “piggybacked” on segments going the other direction.

17



Sliding Window Technique

TCP uses the sliding window technique (with variable
window size) to:

I Maximize the throughput of octets.
I Control end-to-end octet flow.

Each acknowledgment contains a window advertisement
that specifies how much room is available in receiver’s
buffer.

The window advertisement is used by the sender to adjust
its window size.

18



Retransmission

When a TCP segment is transmitted, a timer is started,
and if this timer expires before an acknowledgment is
received, the TCP segment is retransmitted.

The timeout value for the connection is computed by an
adaptive retransmission algorithm.

I The timeout value is adjusted as the performance of the
connection changes.

I The algorithm computes the sample round trip time as a
weighted average of the round trip times for the
segments sent across the connection.

I The timeout value is then computed from the sample
round trip time using the estimated variance of the
round trip times.

19



Acknowledgment Ambiguity

The round trip time is hard to measure when a packet is
retransmitted because the acknowledgment does not say
which copy of the packet was received. This is called
acknowledgment ambiguity.

Karn’s algorithm: Estimate the sample round trip time
using only unambiguous acknowledgments and use a
backoff strategy to gradually increase the timeout value
when retransmission occurs.

The algorithm works well even under adverse situations.

20



Congestion Collapse (1)

If segments are retransmitted due to congestion (which
the connection endpoints cannot observe), retransmission
can aggravate congestion and cause congestion collapse.

Multiplicative decrease congestion avoidance:

I The sender maintains a congestion window in addition
to the receiver’s window (given by the window
advertisement).

I The sender’s window is computed as the minimum of
the receiver’s window and the congestion window.

I When a segment is loss (and thus when there is possible
congestion), the congestion window is halved and the
timeout value is doubled.

I The congestion window always allows at least one
segment so that the connection is not completely
shutdown.

21



Congestion Collapse (2)

The slow-start recovery technique increases the
congestion window size one segment at a time after a
period of congestion to avoid wild oscillations in the
congestion window size.

None of these algorithms and techniques are
computationally expensive.

The TCP protocol handles congestion very well for
arbitrary environments (particularly based on wired
networks), but there are more efficient ways of handling
congestion for specific environments.

I Example: TCP over wireless networks.

22



Silly Window Syndrome

Symptoms:

I Each acknowledgment from the receiver advertises a
small window.

I Each segment sent carries a small amount of data.

Outcome: suboptimal throughput.

Heuristics for Avoiding the Syndrome:

I Receive-side silly window avoidance.
I Send-side silly window avoidance.

23



Receive-Side Silly Window Avoidance

Heuristic: Do not advertise small windows but wait until
the window is one half the buffer size or equal to the
maximum segment size.

Two implementations:

1. Send acknowledgment without advertisement.
2. Delay acknowledgment (recommended by the TCP

protocol).

Advantage: Can increase throughput.

Disadvantage: May cause more retransmissions.

24



Send-Side Silly Window Avoidance

Known as the Nagle algorithm (RFC 896).

Heuristic: While waiting for acknowledgments, clump
additional data together in one packet and wait to send it
until either all acknowledgments have been received or
there is enough data to fill a maximum-size packet.

Outcome: Information is sent as fast as the network and
destination can handle it.

25


