
TOWARDS A DISCIPLINE FOR

DEVELOPING

VERIFIED SOFTWARE

William M. Farmer
Dale M. Johnson
F. Javier Thayer

The MITRE Corporation
Bedford, Massachusetts

Technical Report MTP-261

August 1986

i



ii



Abstract

In this paper the formal verification of computer systems and software
is viewed as an endeavor in applied mathematics. It is argued that a for-
mal verification should consist of three separate but interacting processes: a
modelling process, a theorem proving process, and a review and acceptance
process. Suggestions are made for improving the development of these pro-
cesses. Taken together, they outline a proposed discipline for the development
of verified software. The ideas presented were principally, though not exclu-
sively, motivated by the authors’ work in reviewing the design verification of
the Restricted Access Processor (RAP). Examples are drawn from the RAP
verification to support our suggestions for improving formal verification.

This paper will be presented at the 9th National Computer Security Con-
ference, September 15–18, 1986 at the National Bureau of Standards, Gaithers-
burg, Maryland.

iii



Acknowledgments

We gratefully acknowledge the support of the Rome Air Development Cen-
ter under contract number F19628-86-C-0001 during the preparation of this
paper. We would also like to thank E. Bensley, J. Millen, P. Tasker, and
J. Williams, who offered guidance in the formulation of the ideas presented in
this paper.

iv



1. INTRODUCTION

The main purpose of this paper is to propose a discipline for the develop-
ment of verified software. Our comments in this paper are motivated in part
by our recent experience reviewing the design verification of the Restricted
Access Processor (RAP) (cf. [3], [7]). We also draw some examples from the
RAP verification to support our views. The paper attempts to describe veri-
fication as an endeavor in applied mathematics. Though this viewpoint is not
completely new (cf. [1], [10]) and might even be regarded as the obvious one
to take, from our review experience we are led to believe that the exact conse-
quences of taking this view are not fully and clearly understood. In particular,
perceiving verification as applied mathematics requires a clear differentiation
between the following two processes:

(1) Establishing formal mathematical models of natural-language requirements

or specifications. In the case of design verification for secure systems,
these models are usually called the formal security model and the (for-
mal) top level specification (TLS). We refer to this as the modelling
process, which in our view is perhaps the most critical part of the veri-
fication, yet it is apparently the least understood.

(2) Using mathematical techniques to reason about the formal models ob-

tained by the modelling process. In the design verification of the RAP,
this reduced to proving formally that the TLS satisfied the formal secu-
rity model. We call this the theorem proving process.

We realized in our review of the RAP that the distinction between the mod-
elling process and the theorem proving process is especially important from the
reviewer’s perspective, since the tasks involved in each of these processes are
to be understood and judged in very different ways. Yet while these processes
are distinct, it is inevitable (and definitely beneficial for the verification) that
they will interact with one another.

In addition to these two processes we believe that it is useful, in analogy
with similar validation processes occurring in the mathematical sciences, to
include a third interacting process as well:

(3) Reviewing and accepting the verification. Generally, this means ascer-
taining that the verification satisfies requirements agreed upon by the
customer and the verifier. Requirements may include, for example, the
use of automated tools. Another relevant and more important require-
ment is soundness of the logical principles used in the verification. In

1



our view, part of the review process should allow for interaction between
the reviewers and the verifiers.

2. THE MODELLING PROCESS

Mathematical modelling is a crucial process in the task of formal verifi-
cation. For example, in the verification of secure systems, a formal security
model for the security policy is constructed or, in some cases, provided (e.g.,
the Bell-LaPadula security model). In this section we discuss various aspects
of the modelling needed in verification, using our findings from reviewing the
design verification of the RAP to develop examples and special points.

In general, models provide a description of some real-world phenomenon.
By “phenomenon” we mean something very general. A phenomenon may be
a process or a system; even a natural language description of a system or
process is a phenomenon. A fundamental aim for constructing a model is to
allow the use of formal deductive techniques on the model to gain some new
information or conclude something about the phenomenon. This aim requires
that models be comprehensive in the sense that they contain all information
necessary for applying these formal techniques. It should be emphasized that
formal deduction is clearly distinguished from other forms of evidence, such
as empirical evidence, so that the requirement of comprehensiveness is quite
important.

Another highly significant aim of the modelling process is to make the
phenomenon intelligible to others. In order to achieve this, the models have
to be clear and thoroughly explained. Models that resemble computer code
do not meet these goals.

The process of building useful models is one of the most difficult in all of
science. The model-builder has first to select carefully the tools and techniques
from mathematics that seem the most appropriate for presenting the model.
Most critically, he must decide how to represent elements of the phenomenon
with mathematical constructs.

The model should be a clear portrayal of the phenomenon, so that it can
be accepted. Acceptance of a model is based on the collective experience of
the researchers doing modelling and also on subjective factors, such as math-
ematical taste. A precept that is universally true is that models are meant
to be understood. Questions of style and format are not to be brushed aside
as technically irrelevant. Moreover, specific sciences have developed special
methodologies for validating models. These methodologies generally rely on
experimentation and statistical sampling; even some form of disciplined intro-
spection may be used.

2



Unfortunately, no modelling methodology has, to our knowledge, been suc-
cessfully developed for the young science of verification. The lack of a method-
ology makes modelling even more difficult.

We must emphasize that by the term “modelling” we do not refer exclu-
sively to the construction of the formal security model, though this construc-
tion is a significant part of the modelling process in some verifications such as
the RAP. We must also include the writing of the formal top level specification
(TLS) as a part of the modelling of the system.

The modelling required for the design verification of the RAP is typical of
that needed in verification. We can identify the parts of the modelling process
in general as follows:

(1) Selection of a methodology for the verification, such as the Hierarchi-
cal Development Methodology (HDM) [6]. This selection has significant
implications for the verification. HDM was used for the RAP verifica-
tion. (Other possible methodologies are Gypsy and Formal Development
Methodology. Also, an Enhanced HDM has recently been released.)

(2) Construction of a formal security model derived from a security policy.
The purpose of this model is to formalize natural language requirements
concerning security. As part of the modelling process, the functioning
and adequacy of the model should be explained. In the case of the RAP
the formal security model was derived from an Air Force security policy.
Some explanation of the functioning of the RAP accompanied the formal
model.

(3) Characterization of the design by writing a formal top level specification.
The TLS was a large and significant part of the modelling for the RAP
verification.

(4) Generation of conjectures during the modelling process, which then need
to be investigated during the theorem proving process. In the case of
the RAP verification we found that it was necessary to make the exact
nature of these conjectures as clear as possible.

3



(5) Justification of the decisions taken in steps (1)–(4), in order to advance
the (implicit or explicit) claim that the modelling is adequate. Unfor-
tunately, it is often the case that this aspect of the modelling is not
adequately carried out.

We have prepared some suggestions for improving the modelling process in
verification. These were in part prompted by our examination of the modelling
done for the RAP verification. In looking at the modelling in the RAP verifi-
cation we were particularly concerned with the need for adequacy, comprehen-
siveness, intelligibility, and simplicity. These are highly desirable features that
should be considered in the modelling done in verification. Our suggestions
are intended to help verifiers make these features a part of their verifications.

(1) Explain and carefully justify fundamental decisions about the modelling.

Throughout a verification project, but more especially near the beginning,
the verifiers should attentively think about the modelling needed or being
done. Decisions about the modelling should be carefully documented and jus-
tified. At the outset of the RAP verification, certain modelling ideas had to
be established, i.e., decisions had to be taken about how to portray the actual
RAP (the reality in this case) as a mathematical model. The RAP is a pro-
cessor guarding the data link between the Network Control Center (NCC) and
the NASA Communications Message Switching System (MSS). Its purpose is
to prevent uncleared users from accessing classified information or facilities
available through the NCC. A security policy had been provided by the Air
Force and the architecture of the system hardware had been developed. The
basic modelling problem was to find mathematical constructs that reflected
the chosen architecture of the hardware and the intended security of the sys-
tem. The verifiers decided to model the operation of the RAP conceptually as
sequences of events that passed over a (conceptual) security perimeter. The
selection of a particular security perimeter and a particular way to portray
the flow of events is a fundamental modelling decision. Verifiers must not only
understand the nature of this basic decision about modelling, but be able to
justify it as well.

(2) Give broad explanations of the models and, if possible, key information
about the process by which they were derived.

Broad explanations of entire models are extremely helpful to a reader or
reviewer. Moreover, information about the genesis of the models can illu-
minate the models themselves. During the construction of a formal model

4



various modelling decisions are made. These are reflected in the final con-
structed model, but often in obscure ways. The key information about the
construction of the models should be preserved in an abbreviated form in the
documentation.

In the case of the RAP we found that the documentation, though substan-
tial, could have contained more information about the ideas behind the actual
construction of the two main models, the formal security model and the formal
top level specification. To take a simple example, we found that one very large
definition in the formal security model could be reduced to a pair of tables.
Once these tables were constructed, the formal definition became much easier
to understand.

(3) Choose a methodology that is adequate to formalize the notions that
need to be modelled.

This choice is a very difficult matter. One wants to choose an adequate
methodology for a verification, but at present there are only a few from which
to choose. A fundamental modelling decision taken for the RAP verification
was to adopt the Hierarchical Development Methodology (HDM) [6]. This
decision had many implications for the modelling process. Most notably it
implied the adoption of the sequential state machine model, a basic part of
HDM, in the modelling. For this general model concurrency is not so easily
taken into account. Hence, it is at least questionable whether this sequential
model is adequate to deal with the reality of the RAP. Arguments ought to be
given for the (implicit) claim that the chosen methodology is adequate.

(4) Try to develop a formal model that has a direct and clearly understood
relation to the English policy statement or English requirements specifi-
cation.

The formal security model was a very significant part of the modelling for
the RAP [2]. The purpose of this formal model was to capture the Air Force
security policy in a succinct and correct way. The model was based on event
histories and was written in the specification language SYSPECIAL, a variant
of the SPECIAL of HDM. The heart of the model consists of a hierarchy of
definitions of predicates on event histories, with a single predicate (MBPS OK)
at the top of the hierarchy representing the desired security invariant.

In order to facilitate the construction of the formal model a shortened form
of the Air Force security policy was developed, called the “derived security
policy”. This was undoubtedly a great help in constructing the formal security
model, in particular, in seeing how the Air Force policy should be related to

5



the model. The derived security policy is a terse English-language statement of
the security requirements that is closely related to the formal model; in many
instances there are direct (one-to-one) correspondences between words of the
derived policy and functions or predicates of the model. The model would
have been even better if it could have been a simpler formalization of the
policy with more direct correspondence between policy and model. However,
formalization is a very difficult art.

In general, formal models should be made as simple as possible and the re-
lation to English-language requirements specifications should be made as clear
as possible through informal explanations in the documentation and perhaps
through the construction of derived policy statements. One can see the ad-
vantages of a derived tersely-worded security policy statement in the case of
the RAP. Generally an English statement or specification should be as simple
as possible.

(5) Definitions in a model should have a hierarchical structure and this struc-
ture should be presented fully.

The definitions of the formal security model for the RAP were arranged in
a hierarchy. This arrangement is certainly a good one. It is one that can be
used to good effect in modelling in verification. However, it is useful to have
as much information as possible about the hierarchy. The hierarchy effectively
indicates a “flow” from the most general to the least general, revealing a great
deal about the structure of the model. The verifiers of the RAP might have
given more information about their hierarchy. Their diagram of dependencies
in the hierarchy was reduced to a brief summary in the documents. A general
explanation of a hierarchy of definitions can be very helpful as a supplement
to the explanations of the individual definitions found in the hierarchy.

(6) Use nonprocedural forms of expression.

In our attempt to understand the formal security model for the RAP we
were led to develop our own intermediate mathematical model and explana-
tion. We found that it was very helpful to remove the recursions from the
basic definitions in the formal model and state these with the aid of quanti-
fiers and logic. The formal model as given effectively had a mix of procedural
description (the recursions) and strict logical description. This mix was not
always conducive to providing a direct and clear exposition of the model.

It was only by constructing our own intermediate mathematical model for
the given formal security model that we could begin to see the relation between
the English security policy and the given formal model. This intermediate

6



model allowed us eventually to decide that for the most part the policy was
correctly reflected in the given formal model.

The modelling done in constructing the TLS for the RAP [8] had some
special problems, partly associated with adoption of HDM. We found the TLS
at times quite difficult to understand. We have a number of suggestions for im-
provement in writing these kinds of specifications. In the following we assume
an understanding of the terminology of HDM.

(7) Use homogeneous data types, whenever possible.

To avoid confusion, use homogeneous data types. If for some reason the
use of homogeneous data types is impossible, pending data types should be
considered.

(8) Describe state transitions as simply as possible.

The effects of O-functions on individual V-functions should be easily un-
derstood. Ideally, the effects of an O-function should be of the simple form:

V = F (W ),

where V , W are V-functions and F is some simple function. The functionality
of O-functions of this sort is manifestly clear to a reader.

(9) Provide an information flow diagram.

The flow of information between V-functions should be clear. Ideally, one
should be able to represent the flow induced by an O-function as a directed
graph. The nodes of this graph correspond to V-functions and the edges cor-
respond to assignment statements. The graph provides a clear understanding
of the general architecture of the TLS.

(10) Give adequate explanations of the relations among the models.

This suggestion brings up the issue of comprehensiveness of the models.
One of the goals of the RAP verification was to prove that the TLS satisfied the
security requirement or predicate formalized in the formal security model. This
formalized security requirement is essentially a predicate on finite sequences
of “events”. Since sequences of events do not constitute part of the state of
the TLS state machine, it is not clear how to interpret the assertion that the
TLS satisfies the security predicate.

7



An interpretation can be made by associating event histories with certain
sequences of O-functions or OV-functions. These sequences are the possible
execution sequences of the TLS state machine. The assertion that the TLS
satisfies the model then means essentially that for every execution sequence, its
associated event history satisfies the formal security predicate. However, this
correspondence is not a part of either the formal security model or the TLS.
How one associates an event history to an execution sequence is a problem of
modelling. In the case of the RAP, however, event histories were introduced as
part of the theorem proving stage in a manner which seemed to suggest that
one could prove that the association chosen was the correct one. Nevertheless,
this association was especially problematical, since crucial assumptions about
concurrency were implicitly made. In general, the omission of the relation
between models means that the modelling process is not as comprehensive as
it should be.

3. THE THEOREM PROVING PROCESS

The second process of formal verification is the theorem proving process.
In this process mathematical proofs of the conjectures formulated during the
modelling process are constructed and analyzed. These proofs serve two func-
tions:

(1) To determine whether the conjectures formulated during the modelling
process are true.

(2) To clarify the meaning of these conjectures.

The first function is well understood. No doubt it is the part of formal
verification that has received the most attention. The second function is often
ignored. It is, however, essential for identifying inappropriate or incorrectly
formulated conjectures, and thus spotting apparent errors in the modelling
process.

Unlike the modelling process, the theorem proving process is a completely
mathematical endeavor. Proofs of theorems are developed in a well-defined
mathematical theory (created by the modelling process), in which there is no
direct mention of the real-world application.

As part of a verification, mathematical proofs can provide a level of assur-
ance for the correctness of a conjecture that is not obtainable by traditional
means of software testing. Nevertheless, mathematical proofs are not infallible.
Their validity must be ultimately grounded in some kind of critical process.

8



In mathematics, this critical process occurs within the community of research
workers.

Because proofs used in formal verification tend to be long and complicated,
verifiers usually try to construct them with the aid of machines (theorem
provers, proof checkers, simplifiers, etc.). This approach is certainly good and
probably necessary. However, without care it can become an obstruction to
the theorem proving process, leading to results such as the following:

(1) Theorems are proved without being clearly understood.

(2) Opaque calculation is given instead of careful argument.

(3) Proof analysis is given less emphasis than proof construction.

(4) Conceptual simplification is overlooked.

(5) Errors in the formulation of conjectures are not discovered.

(6) The fallibility of proofs is forgotten.

If verifiers are to construct good proofs with the assistance of machines,
they need to have a clear understanding of what a verification proof should be.
We feel that there are six basic goals that a verification proof should attempt
to achieve:

(1) A verification proof should clearly state the theorem it purports to prove.

To any mathematician this goal is so obvious that it hardly needs stating.
Nevertheless, achieving this goal is essential to any good proof. A proof’s
value is diminished in proportion to the lack of clarity in the statement of the
theorem.

(2) A verification proof should increase one’s confidence in the truth of the
theorem.

This is clearly the major goal of any proof. It is important to remember
that proofs can never give an absolute guarantee of correctness.

(3) A verification proof should be rigorous.

The one thing that separates formal verification from traditional ways of
testing software and computer systems is that formal verification attempts to
show something is correct with a rigorous proof. A rigorous proof strives to
use only well-defined concepts and to have no loose ends. Nothing is ignored
or left to chance.

9



(4) A verification proof should clarify the meaning of the theorem.

It is a rare luxury to begin proving a conjecture that is correctly formulated.
This is true in general mathematics as well as in formal verification. Thus it
is very desirable that the process of proving a conjecture helps to correct the
statement of the conjecture itself. The ideal process goes like this: a (partial)
proof of the conjecture is constructed, it is analyzed, the conjecture is modified,
and the process is begun again. The process ends when one is satisfied that
a complete proof of an appropriate and correct conjecture has been obtained.
(Cf. [5] for further discussion of this “dialectical” process.) In order for this
process to be successful, it is necessary that verification proofs elucidate the
meaning of the theorems they prove. This cannot be done by proofs consisting
merely of a long series of opaque logical calculations.

(5) A verification proof should be maintainable.

Software and computer systems need to be modified virtually on a con-
tinuous basis. Hence, verification proofs should be modified whenever the
things they verify are modified. In other words, verification proofs should be
maintainable just as computer systems should be maintainable.

(6) A verification proof should be machine checkable.

Verification proofs tend to be long and complicated. One cannot expect to
check them by hand without making mistakes. It is reasonable to expect that
many of these mistakes would not occur when a proof is machine checked.
Although it is desirable that a verification be machine checkable, it is not
necessary that a verification proof be machine generated. (Of course, it is often
useful to construct parts of a verification proof with the aid of a machine.)

The state of the art of verification proofs falls significantly short of these
six goals. We believe that this is due in part to an inadequate understanding
by verifiers of what proofs should be and what role machines should play in
proof construction.

To help illustrate how real verification proofs satisfy (and fail to satisfy)
the goals we have stated above, we shall briefly examine the verification proof
for the design of the RAP. The RAP verification proof is a good example to
consider because, although it certainly is one of the best large-scale verification
proofs produced to date, it exhibits some of the deficiencies that commonly
plague verification proofs.

The principal theorem of the design verification of the RAP can be stated
as follows:

10



Theorem. Every implementation of the Top Level Specification (TLS) of the
RAP satisfies the requirements formulated in the formal security model.

This theorem is only stated informally in the RAP Verification Results Report
[9] and its mathematical meaning is not explicated at all.

The proof of the theorem breaks up into two parts:

Part A. The proof that the theorem holds if the assertions of an Augmented
TLS (ATLS) are invariants of the ATLS.

Part B. The proof that the assertions of the ATLS are invariants of the ATLS.

These two parts are handled very differently. Part A of the proof is an
informal mathematical argument, which is given very little attention relative
to Part B. Moreover, the argument is flawed because part of the modelling
process (the construction of the ATLS from the TLS) is mixed up with it.

Part B is of a completely different nature from Part A. It is essentially a
series of 36 very detailed formal deductions. The formal deductions are not
actually given in the Verification Results Report [9]; instead logs are given of
the theorem prover commands used to construct the deductions.

Part B does a reasonably good job of satisfying the goals of rigor (3) and
machine checkability (6). Its success results from being a formal proof con-
structed (and checked) with the use of a machine. Since the logs are modifiable
and reusable, part B also contributes to the goal of maintainability (5). The
logs, however, are opaque. They do not help one to understand the subtheo-
rems they prove, nor do they communicate the mathematical meaning of the
deductions.

The lack of perspicuity in the formal deductions means that one’s confi-
dence in the claim that the ATLS assertions are invariants of the ATLS is
almost purely a matter of faith in the MUSE system, the theorem proving
system used to construct the formal deductions. The MUSE system [4] was
developed by Sytek, Inc. It is a competent and, in many ways, admirable
theorem proving system. However, although the MUSE system appears to
work correctly, it has not been formally verified (like all such systems) and it
is relatively untested, having thus far been used on only one large project. As
long as the MUSE system itself is not verified, genuine confidence in it can
only come after it has been used by several different parties on several different
projects.

11



In summary, the RAP design verification proof is composed of an informal
part and a part constructed with the aid of a machine. The first part received
only cursory attention. The second part was carried out in great detail, but
with too much reliance on automated reasoning tools. Although the RAP
verification proof is successful in several ways, it illustrates some common
shortcomings of verification proofs:

(1) Insufficient attention is paid to the informal parts of the proof.

(2) Justification for modelling decisions is presented as part of the verifica-
tion proof.

(3) Formal deductions are not presented in an understandable form.

(4) Too much reliance is placed on unverified theorem proving tools.

We finish our discussion of the theorem proving process by giving five
suggestions for constructing good verification proofs.

(1) Use hierarchical construction.

To be readable and understandable, long proofs must be constructed in
a hierarchical manner. This is eminently true for verification proofs, which
tend to be oppressively long and full of minute details. The components of a
hierarchical proof should be subproofs of the form

by the argument A, C follows from H1,...,Hn.

At the top level C is the conjecture that is proved, and at the bottom level
the Hj’s are the hypotheses which are being assumed or are trivially true.

The crucial parts of the proof — the “idea” of the proof — should be in
the arguments at the top of the hierarchy, and the tedious details of the proof
should be at the bottom. One can read a proof of this form part way down
and be confident that the basic idea of the proof and, hence, the basic idea of
the theorem are correct, even though there could be minor problems with the
details of the proof and the theorem.

(2) Use modular construction.

Mathematicians have been using modular construction in proofs for cen-
turies, and modular construction is considered part of good programming. It
is well understood why modular construction is desirable, even necessary, in

12



mathematical proofs and computer programs. To a large extent the whole
enterprise of formal verification rests on one’s ability to develop methods of
modularity. In conjunction with hierarchical construction, modular construc-
tion is an excellent way to satisfy the goal of maintainability.

By making use of proof parts that have been used many times (such as
fundamental lemmas), one’s doubt in a verification proof can be directed to a
few specific aspects of the proof. This helps to increase the reviewer’s confi-
dence in the proof by allowing him to concentrate only on what is new. There
is some use of modularity in the the RAP verification proof with the use of
the theorem prover command logs.

(3) Identify all premises of the proof.

A good proof of any kind should clearly identify all the premises used and
assumed in it. Incorrect proofs often result from the use of hidden assumptions
that are not valid. Following this suggestion should help in attaining all but the
last verification goal. A clear statement of the theorem includes the premises
that are assumed (goal 1). In a well-constructed proof, the aspects of the
proof which might be questionable are concentrated in the premises of the
proof (goal 2). A precise list of premises is a requirement of a rigorous proof
(goal 3). Knowing the premises of a proof increases one’s understanding of the
theorem (goal 4). The premises of a proof identify the conditions under which
the proof is valid and can be used again (goal 5).

(4) Use calculations carefully.

Formal verification has been rejected by some [1] as a means of testing
the reliability of software. One of the principal reasons for this is that all too
often verification proofs contain massive amounts of opaque logical calcula-
tions. Calculation is certainly a very valuable aspect of mathematical reason-
ing. However, if one is going to use calculations in a fundamental way in a
verification proof, one needs assurances that the calculations are performed
correctly. Until one has these assurances, it is very dangerous to accept the
results of calculation without closely examining what was done.

Calculations can be incorrect and, when calculations are opaque (such as
arithmetic is in a digital computer), there is no way of easily detecting errors.
Complicated calculations should be used in a verification proof only when
there is a very high assurance that they will be correct. For example, it is ap-
propriate to use arithmetic calculations performed by a good digital computer
or simplifications performed by a well-tested and very reliable simplifier. As

13



prominently mentioned by DeMillo et al. in [1], virtually all formal verifica-
tions to date suffer in some degree from excessive reliance on formal logical
calculation.

(5) Use an expressive high level language.

It is clear that verifiers can greatly benefit from the use of machines to assist
in the development of verification proofs. Using machines necessitates working
with formal languages. It is exceedingly hard to get a machine to handle
formal languages that have the expressibility of the informal languages used by
mathematicians. Consequently, verifiers have usually been tempted into using
very simple formal languages. This approach keeps the proof development at
such a low level that the verifier and reviewer become lost in a heap of trivia.

Relief can only come with the use of expressive high level languages. Lan-
guages of this type are difficult to develop and difficult to program a machine
to use, but they allow human beings to think naturally and to make use of the
richness of modern mathematics.

4. THE REVIEW AND ACCEPTANCE PROCESS

In mathematics the validation or acceptance of a new result is the outcome
of a complex interactive process involving the author, the interested commu-
nity, and to a lesser extent a technical reviewer appointed by the editor of
a journal. Based on our experience of reviewing the RAP, we now discuss
how the process of validation ought to occur in the verification of design or
program correctness. We believe that many useful analogies between the val-
idation processes in mathematics and in verification can be made. However,
while these analogies exist, we still think that the two processes have important
differences.

In mathematics (or in other areas such as mathematical economics or math-
ematical physics), workers in each area of research try to build on or improve
published results. They are strongly motivated to understand these results and
make sure that they are correct. Mathematical papers are normally structured
in a way that permits understanding at many different levels. For example, a
specialist reader can take a cursory look at a good mathematical paper and
still get some notion of the paper’s contents. There are also aesthetic reasons
for reading mathematical papers. Researchers read technical papers, not only
because they can use the results in their own work, but also because reading
them is a pleasurable experience. Generally, papers that are not well written
are not immediately received, and the results they claim take longer to be

14



accepted by the community of research workers. Insuring that their papers
are read is a powerful reason for authors to write clear as well as interesting
papers.

In contrast to the situation in the other mathematical sciences, very few
people read verifications of large programs or systems. Most of the reasons that
exist for reading research papers do not exist for reading verification proofs.
Verification proofs are tedious and rarely provide a basis for further research in
the same way as mathematical proofs. Cursory readings of verification proofs
provide absolutely no insight. In short, verification proofs are written with
no intention of attracting readers. Generally, new software has been accepted
exclusively on the claims of developers. In the best of circumstances (as was
the case for the RAP) the design or code undergoes some sort of independent
review process. Even in the case of the RAP, the review process for the design
verification was not explicitly discussed in the original verification plan, despite
the fact that a review process for code development was carefully established.

As we have argued above, the existence of proofs, even automated ones,
is in itself no guarantee of correctness. Proofs have to be submitted to a
thorough review process in much the same way as in mathematics. Since it
is unlikely that verifications will attract interested and critical readers, only a
formal review process by appointed referees seems to be feasible. This review
process should be considered an integral part of the verification effort.

It is our belief that the reviewers should be regarded as the main audi-
ence for a verification proof. If the purpose of such a proof is to persuade
any potential doubter, then at least the reviewers must be convinced of the
correctness of the verification proof. A verification effort which fails to satisfy
this condition cannot be considered a proof in any reasonable sense. In order
to achieve these goals, the following two conditions at least should be met:

(1) Any formal models used in the verification must be understandable with-
out undue effort. Specific guidelines for clarity of specifications should
exist to aid specification writers. These guidelines should be agreed upon
before any formal models are written.

(2) Even if automated tools are used, the structure of the formal proof must
be clearly stated. Presenting the structure clearly makes the automated
proof more credible as well as making the verification much more main-
tainable.

5. SUMMARY

15



In this paper we have proposed a discipline for verifying software. We
think that a verification should consist of three interactive processes: a mod-
elling process, a theorem proving process, and a review and acceptance pro-
cess. The modelling process should develop formal mathematical models of all
requirements, specifications, processes, and systems that are relevant to the
verification, and should generate conjectures in the mathematical framework
established by the models. The models and conjectures should be clear and
their appropriateness justified. In the theorem proving process, proofs of the
conjectures generated during the modelling process should be constructed and
analyzed. Unlike the modelling process, the theorem proving process should be
a purely mathematical endeavor. The review and acceptance process should
provide a means of communication, so that the verifiers can convince the re-
viewers — and ultimately the customer — of the adequacy of the verification.

REFERENCES

1. DeMillo, R. A., Lipton, R. J., and Perlis, A. J., “Social Processes and
Proofs of Theorems and Programs,” Communications of the ACM 22

(1979), 271–280.

2. DiVito, B., and Proctor, N., “Restricted Access Processor Formal Secu-
rity Model,” Technical Report TR-82041, Sytek (July 1985).

3. DiVito, B., and Sullivan, E., “Restricted Access Processor System Veri-
fication Plan,” Technical Report TR-82046, Sytek (October 1983).

4. Halpern, D., and Owre, S., “MUSE: The Sytek Proof Processing Sys-
tem”, Technical Report TR-85007, Sytek (July 1985).

5. Lakatos, I., Proofs and Refutations, Cambridge University Press, Cam-
bridge, 1976.

6. Levitt, K., Robinson, N. L., and Silverberg, B. A., “The HDM Hand-
book,” SRI International, Menlo Park, California, (June 1979).

7. Proctor, N., “The Restricted Access Processor: An Example of Formal
Verification,” Proceedings of the 1985 IEEE Symposium on Security and

Privacy, Oakland, California, 1985.

8. Proctor, N., “Restricted Access Processor Message Block Processing Sys-
tem Formal Top-Level Specification,” Technical Report TR-83002, Sytek
(July 1985).

16



9. Proctor, N., “Restricted Access Processor Verification Results Report,”
Technical Report TR-84002, Sytek (July 1985).

10. Scherlis, W. L., and Scott, D., “First Steps towards Inferential Program-
ming”, Proceedings of the IFIP Congress, Paris, 1983.

17


